

Digital Video Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 35 2019r1

Digital Program Insertion Cueing Message for Cable

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 2

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) / International Society of Broadband Experts
(ISBE) Standards and Operational Practices (hereafter called “documents”) are intended to serve the public
interest by providing specifications, test methods and procedures that promote uniformity of product,
interchangeability, best practices and ultimately the long-term reliability of broadband communications
facilities. These documents shall not in any way preclude any member or non-member of SCTE•ISBE from
manufacturing or selling products not conforming to such documents, nor shall the existence of such
standards preclude their voluntary use by those other than SCTE•ISBE members.

SCTE•ISBE assumes no obligations or liability whatsoever to any party who may adopt the documents.
Such adopting party assumes all risks associated with adoption of these documents, and accepts full
responsibility for any damage and/or claims arising from the adoption of such documents.

Attention is called to the possibility that implementation of this document may require the use of subject
matter covered by patent rights. By publication of this document, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. SCTE•ISBE shall not be responsible for
identifying patents for which a license may be required or for conducting inquiries into the legal validity or
scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document
have been requested to provide information about those patents and any related licensing terms and
conditions. Any such declarations made before or after publication of this document are available on the
SCTE•ISBE web site at http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc. 2019
140 Philips Road
Exton, PA 19341

http://www.scte.org/

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 3

Table of Contents
Title Page Number
Table of Contents ___ 3

1. Introduction ___ 8
1.1. Executive Summary __ 8
1.2. Scope ___ 8
1.3. Benefits __ 8
1.4. Intended Audience ___ 9
1.5. Areas for Further Investigation or to be Added in Future Versions ___________________ 9

2. Normative References ___ 9
2.1. SCTE References __ 9
2.2. Standards from Other Organizations ___ 9
2.3. Published Materials __ 10

3. Informative References ___ 10
3.1. SCTE References ___ 10
3.2. Standards from Other Organizations __ 11
3.3. Published Materials __ 11

4. Compliance Notation ___ 12
5. Abbreviations and Definitions __ 12

5.1. Abbreviations __ 12
5.2. Definitions ___ 13

6. Introduction __ 15
6.1. Splice points (Informative) ___ 15
6.2. Program splice points (Informative) ___ 16
6.3. Splice events (Informative) __ 16
6.4. Content storage considerations (Informative) __________________________________ 17
6.5. PID selection ___ 17

6.5.1. PID selection (Normative) ___ 17
6.5.2. PID selection (Informative) __ 17

6.6. Message flow (Informative) __ 18
6.7. Usage Examples (Informative) ___ 19

6.7.1. SCTE 35 Ad Break Example _______________________________________ 19
6.7.1. SCTE 35 Program Example _______________________________________ 20
6.7.1. SCTE 35 Complex example _______________________________________ 22

7. Notational Conventions ___ 23
7.1. Normative XML schema __ 23
7.2. Unknown/Unrecognized/Unsupported XML elements and attributes ________________ 23
7.3. Element order __ 23
7.4. Binary representation in XML __ 24

8. PMT Descriptors __ 24
8.1. Registration descriptor ___ 24

8.1.1. Semantic definition of fields in Registration Descriptor ___________________ 25
8.2. Cue Identifier Descriptor __ 25

8.2.1. Semantic definition of fields in Cue Identifier Descriptor __________________ 25
8.2.2. Description of cue_stream_type usage _______________________________ 26

8.3. Stream Identifier Descriptor ___ 26
8.3.1. Semantic definition of fields in Stream Identifier Descriptor _______________ 27

9. Splice information table ___ 27
9.1. Overview __ 27
9.2. Legacy Command Descriptions __ 28
9.3. Time Signal Command ___ 28
9.4. Command Changes ___ 28
9.5. Time base discontinuities ___ 29
9.6. Splice info section ___ 29

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 4

9.6.1. Semantic definition of fields in splice_info_section() _____________________ 31
9.7. Splice commands ___ 35

9.7.1. splice_null() __ 35
9.7.2. splice_schedule() ___ 35

9.7.2.1. Semantic definition of fields in splice_schedule() _______________________ 37

9.7.3. splice_insert() __ 39
9.7.3.1. Semantic definition of fields in splice_insert() __________________________ 41

9.7.4. time_signal() ___ 43
9.7.4.1. Semantic definition of time_signal() _________________________________ 44

9.7.5. bandwidth_reservation() __ 44
9.7.6. private_command() __ 45

9.8. Time ___ 46
9.8.1. splice_time() ___ 46

9.8.1.1. Semantic definition of fields in splice_time() ___________________________ 46

9.8.2. break_duration() __ 47
9.8.2.1. Semantic definition of fields in break_duration() ________________________ 47

9.9. Constraints __ 48
9.9.1. Constraints on splice_info_section() _________________________________ 48
9.9.2. Constraints on the interpretation of time ______________________________ 48

9.9.2.1. Constraints on splice_time() for splice_insert() _________________________ 48

9.9.2.2. Constraints on break_duration() for splice_insert() ______________________ 49

10. Splice Descriptors ___ 50
10.1. Overview __ 50
10.2. Splice descriptor __ 50

10.2.1. Semantic definition of fields in splice_descriptor() ______________________ 51
10.3. Specific splice descriptors ___ 52

10.3.1. avail_descriptor()__ 52
10.3.1.1. Semantic definition of fields in avail_descriptor() _______________________ 52

10.3.2. DTMF_descriptor() __ 53
10.3.2.1. Semantic definition of fields in DTMF_descriptor() ______________________ 54

10.3.3. segmentation_descriptor() __ 54
10.3.3.1. Segmentation descriptor details ____________________________________ 57

10.3.3.2. Cablelabs metadata identifier ______________________________________ 64

10.3.3.3. MPU() definition and semantics ____________________________________ 65

10.3.3.4. MID() definition and semantics _____________________________________ 65

10.3.3.5. Segmenting Content - Additional semantics ___________________________ 65

10.3.3.6. Programs - Additional semantics ___________________________________ 67

10.3.3.7. Chapters - Additional semantics ____________________________________ 68

10.3.3.8. Break – Additional semantics ______________________________________ 68

10.3.3.9. Delivery Restrictions – Additional semantics __________________________ 69

10.3.3.10. Content Identifiers – Additional semantics ____________________________ 70

10.3.3.11. Placement Opportunities – Additional semantics _______________________ 70

10.3.4. time_descriptor() __ 74
10.3.4.1. Informative description of TAI ______________________________________ 74

10.3.4.2. Semantic definition of fields in time_descriptor() ________________________ 75

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 5

10.3.4.1. Synchronized Client Clock __ 76

10.3.4.2. Synchronized Clock carriage in HLS Timed Metadata (ID3 tags) ___________ 77

10.3.5. audio_descriptor() ___ 77
10.3.5.1. Semantic definition of fields in audio_descriptor() _______________________ 79

11. Encryption ___ 80
11.1. Overview __ 80
11.2. Fixed key encryption ___ 81
11.3. Encryption algorithms __ 81

11.3.1. DES – ECB mode ___ 81
11.3.2. DES – CBC mode ___ 81
11.3.3. Triple DES EDE3 – ECB mode _____________________________________ 82
11.3.4. User private algorithms ___ 82

12. SCTE 35 Usage ___ 82
12.1. SCTE 35 Usage in DASH ___ 82
12.2. SCTE 35 Usage in HLS __ 82

12.2.1. SCTE 35 markup in HLS using EXT-X-DATERANGE ___________________ 82
12.2.2. SCTE 35 markup in HLS using EXT-X-SCTE35 ________________________ 83
12.2.3. HLS cue tags __ 83
12.2.4. HLS playlist example ___ 85

13. SCTE 35 XML elements and types __ 86
13.1. Ext element __ 86
13.2. PTSType __ 87
13.3. Segmentation Upid Element ___ 87

14. Sample SCTE 35 Messages (Informative) ___ 87
14.1. Time_Signal – Placement Opportunity Start ___________________________________ 88
14.2. Splice_Insert ___ 88
14.3. Time_Signal – Placement Opportunity End ___________________________________ 89
14.4. Time_Signal – Program Start/End __ 90
14.5. Time_Signal – Program Overlap Start _______________________________________ 90
14.6. Time_Signal – Program Blackout Override / Program End ________________________ 91
14.7. Time_Signal – Program End ___ 92
14.8. Time_Signal – Program Start/End - Placement Opportunity End ___________________ 92

List of Figures

Title Page Number
Figure 1 - SCTE 35 Ad Break Example 19

Figure 2 - SCTE 35 Program Example 20

Figure 3 - SCTE 35 Program Example 22

Figure 4 - SignalGroup 24

Figure 5 - SpliceInfoSection 31

Figure 6 - SpliceNull 35

Figure 7 - SpliceSchedule 37

Figure 8 - SpliceInsert 41

Figure 9 - TimeSignal 44

Figure 10 – BandwidthReservation 44

Figure 11 - PrivateCommand 45

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 6

Figure 12 - SpliceTime 46

Figure 13 - BreakDuration 47

Figure 14 - SpliceDescriptorType 51

Figure 15 - AvailDescriptor 52

Figure 16 - DTMFDescriptor 53

Figure 17 - SegmentationDescriptorType 56

Figure 18 - TimeDescriptor 75

Figure 19 – Time Relationships 76

Figure 20 – AudioDescriptor 79

Figure 21 - Ext Element 86

Figure 22 - SegmentationUpid 87

List of Tables
Title Page Number
Table 1 - registration_descriptor() 25

Table 2 - cue_identifier_descriptor() 25

Table 3 - cue_stream_type values 26

Table 4 - stream_identifier_descriptor() 27

Table 5 - splice_info_section() 29

Table 6 - splice_command_type values 34

Table 7 - splice_null() 35

Table 8 - splice_schedule() 36

Table 9 - splice_insert() 40

Table 10 - time_signal() 43

Table 11 - bandwidth_reservation() 44

Table 12 - private_command() 45

Table 13 - splice_time() 46

Table 14 - break_duration() 47

Table 15 - Splice Descriptor Tags 50

Table 16 - splice_descriptor() 51

Table 17 - avail_descriptor() 52

Table 18 - DTMF_descriptor() 53

Table 19 - segmentation_descriptor() 55

Table 20 - device_restrictions 58

Table 21 - segmentation_upid_type 60

Table 22 - segmentation_type_id 62

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 7

Table 23 – MPU() 65

Table 24 – MID() 65

Table 25 - time_descriptor() 74

Table 26 - audio_descriptor() 78

Table 27 - Encryption algorithm 81

Table 28 - Tag #EXT-X-SCTE35 83

Table 29 - Tag attributes 83

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 8

1. Introduction

1.1. Executive Summary

This standard, “Digital Program Insertion Cueing Message for Cable” (SCTE 35), is the core signaling
standard for advertising and distribution control (e.g., blackouts) of content for content providers and
content distributors. SCTE 35 is being applied to QAM/IP, Title VI/TVE (TV Everywhere), and live/time
shifted (DVR, VOD, etc.) delivery. SCTE 35 signals can be used to identify advertising breaks,
advertising content, and programming content (e.g., specific Programs and Chapters within a Program).

SCTE 35 complements other Standards to complete the eco-systems. [SCTE 30] is used to support
splicing of advertising into live QAM MPEG-2 transport streams. [SCTE 130-3] is used to support
alternate content decisions (advertising, blackouts, stream switching) for live and time shifted delivery.
[SCTE 214-1] defines how SCTE 35 is carried in MPEG-DASH. [SCTE 224] (ESNI) is used to pass
event and policy information from provider or other systems to communicate distribution control
instructions.

The recommended practices for SCTE 35 are contained in [SCTE 67] “Recommended Practice for Digital
Program Insertion for Cable”.

1.2. Scope

This standard supports delivery of events, frame accurate or non-frame accurate, and associated
descriptive data in MPEG-2 transport streams, MPEG-DASH and HLS. This standard supports the
splicing of content (MPEG-2 transport streams, MPEG-DASH, etc.) for the purpose of Digital Program
Insertion, which includes advertisement insertion and insertion of other content types. This standard
defines an in-stream messaging mechanism to signal splicing and insertion opportunities. As such, this
standard does not specify the insertion method used or constraints applied to the content being inserted,
nor does it address constraints placed on insertion devices.

Fully compliant MPEG-2 transport stream (either Multi Program Transport Stream or Single Program
Transport Stream), MPEG-DASH content, etc. is assumed. No further constraints beyond the inclusion of
the defined cueing messages are placed upon the stream.

This standard specifies a technique for carrying notification of upcoming points and other timing
information in the transport stream. A splice information table is defined for notifying downstream
devices of splice events, such as a network break or return from a network break. For MPEG-2 transport
streams, the splice information table, which pertains to a given program, is carried in one or more MPEG
Sections carried in PID(s) referred to by that program’s Program Map Table (PMT). In this way, splice
event notification can pass through most transport stream remultiplexers without need for special
processing. For MPEG-DASH, the splice information table is carried in the DASH MPD (See [SCTE
214-1]) or in media segments (see [SCTE 214-2] and [SCTE 214-3]). Section 12.2 details how SCTE 35
messages are carried in HLS manifests.

1.3. Benefits

SCTE 35 is a key part of the eco-system to enable advertising and content distribution business. A
common/well-formed signaling model enables downstream systems to be implemented in a cost effective,
consistent and non-ambiguous fashion to achieve business objectives.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 9

1.4. Intended Audience

The intended audience is Content Providers, Multi-Channel Video Program Distributors, TV Everywhere
Providers/Distributors and vendors/developers who build solutions.

1.5. Areas for Further Investigation or to be Added in Future Versions

Follow-up work related to UHD and HDR may be addressed. The use of studio time is currently an active
topic in the DASH-IF group and a future version of this standard may want to reference that work.
Sections 10.3.3.5 to 10.3.3.11 should be reviewed.

2. Normative References
The following documents contain provisions, which, through reference in this text, constitute provisions
of this document. At the time of Subcommittee approval, the editions indicated were valid. All documents
are subject to revision; and while parties to any agreement based on this document are encouraged to
investigate the possibility of applying the most recent editions of the documents listed below, they are
reminded that newer editions of those documents might not be compatible with the referenced version.

2.1. SCTE References

• No normative references are applicable.

2.2. Standards from Other Organizations
[ATSC A/57B] ATSC A/57B – ATSC Standard: Content Identification and Labeling

for ATSC Transport Document A/57B, 26 May 2008
[ATSC A/52] A/52:2018: Digital Audio Compression (AC-3) (E-AC-3) Standard –

https://www.atsc.org/wp-content/uploads/2015/03/A52-2018.pdf
[CLADI1-1] MD-SP-VOD-CONTENTv1.1 – C01-120803 – CableLabs Video-on-

Demand Content Specification 1.1
[EIDR ID FORMAT] EIDR ID Format – “EIDR: ID FORMAT Ver. 1.3 21 July 2015”,

http://eidr.org/documents/EIDR_ID_Format_v1.3.pdf
[FIPS PUB 46-3] FIPS PUB 46-3, 1999 October 25, Data Encryption Standard
[FIPS PUB 81] FIPS PUB 81, 1980 December 2, DES Modes of Operation
[HLS] RFC 8216 – “HTTP Live Streaming” –

https://tools.ietf.org/html/rfc8216
[ISO 15706-2] ISO 15706-2:2007 – Information and Documentation – International

Standard Audiovisual Number (V-ISAN) – Part 2: Version Identifier
[ISO 639-2] Codes for the Representation of Names of Languages

https://www.loc.gov/standards/iso639-2/php/code_list.php
[MPEG Systems] ITU-T Recommendation H.222.0 / ISO/IEC 13818-1 (2013),

Information Technology – Generic Coding of Moving Pictures and
Associated Audio Information: Systems

[RFC 3986] RFC 3986, “Uniform Resource Identifier (URI): Generic Syntax”,
January 2005 -
Error! Hyperlink reference not valid.

[RFC 4648] RFC 4648 – “The Base16, Base32, and Base64 Data Encodings” –
https://tools.ietf.org/html/rfc4648

[RFC 5646] RFC 5646 – “Tags for Identifying Languages” –
https://tools.ietf.org/html/rfc5646

https://www.atsc.org/standard/a522012-digital-audio-compression-ac-3-e-ac-3-standard-12172012/
https://www.atsc.org/wp-content/uploads/2015/03/A52-2018.pdf
http://eidr.org/documents/EIDR_ID_Format_v1.3.pdf
https://tools.ietf.org/html/rfc8216
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc5646

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 10

[SMPTE 330] SMPTE ST 330:2011 Unique Material Identifier (UMID)
[XML] W3C Recommendation, “Extensible Markup Language (XML) 1.0

(Fifth Edition)” – http://www.w3.org/TR/xml/

[XML Namespaces] W3C Recommendation, “Namespaces In XML (Third Edition)” –
http://www.w3.org/TR/xml-names/

[XML InfoSet] W3C Recommendation, “XML InfoSet (Second Edition)”, John
Cowan – http://www.w3.org/TR/xml-infoset

[XML SchemaP1] W3C Recommendation, “XML Schema Part 1: Structures (Second
Edition)”, H. Thompson, et al, 28 October 2004 –
http://www.w3.org/TR/xmlschema-1/

[XML SchemaP2] W3C Recommendation, “XML Schema Part 2: Datatypes (Second
Edition)”, P. Biron, et al, 28 October 2004 –
http://www.w3.org/TR/xmlschema-2/

2.3. Published Materials

• No normative references are applicable.

3. Informative References
The following documents might provide valuable information to the reader but are not required when
complying with this document.

3.1. SCTE References
[SCTE 30] SCTE 30 2017 – Digital Program Insertion Splicing API
[SCTE 67] SCTE 67 2017 – Recommended Practice for Digital Program Insertion

for Cable
[SCTE 104] SCTE 104 2018 – Automation System to Compression System

Communications Applications Program Interface (API)
[SCTE 118-2] SCTE 118-2 2018 – Program-Specific Ad Insertion – Content

Provider to Traffic Communication Applications Data Model
[SCTE 130-3] SCTE 130-3 2013 – Digital Program Insertion-Advertising Systems

Interfaces – Part 3 – Ad Management Service (ADM) Interface
[SCTE 172] SCTE 172 2017 – Constraints on AVC and HEVC Structured Video

Coding for Digital Program Insertion
[SCTE 214-1] SCTE 214-1 2016 – MPEG DASH for IP-Based Cable Services Part

1: MPD Constraints and Extensions
[SCTE 214-2] SCTE 214-2 2016 – MPEG DASH for IP-Based Cable Services Part

2: DASH/TS Profile
[SCTE 214-3] SCTE 214-3 2015 MPEG DASH for IP-Based Cable Services Part 3:

DASH/FF Profile
[SCTE 223] SCTE 223 2017 – Adaptive Transport Stream
[SCTE 224] SCTE 224 2018r1 – Event Scheduling and Notification Interface
[SCTE 236] SCTE 236 2017 – Content Metadata1
[SCTE 248] Operational Practice on Multiple Audio Signaling
[SCTE 250] Event and Signaling Management API (ESAM)

1 Formerly CableLabs Content 3.0

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 11

3.2. Standards from Other Organizations
[Ad-ID] Advertising Digital Identification, LLC – http://www.ad-id.org/
[DOI] Digital Object Identifier website – http://www.doi.org
[EIDR] Entertainment ID Registry Association (EIDR) – http://eidr.org
[HLS-TMD] Timed Metadata for HTTP Live Streaming

https://developer.apple.com/streaming
[ID3v2-strct] ID3 Tag version 2.4.0 – Main Structure

http://id3.org/id3v2.4.0-structure
[ISAN] ISAN (International Standard Audiovisual Number) website –

http://www.isan.org
[ISO 13818–4] ISO/IEC 13818–4: 2004 – Information Technology – Generic coding of

moving pictures and associated audio information – Part 4:
Conformance testing

[ISO 15706-1] ISO 15706-1:2002 – Information and Documentation – International
Standard Audiovisual Number (ISAN)

[ISO 15706-1 Amd 1] ISO 15706-1:2002/Amd 1:2008 – Alternate Encodings and editorial
changes

[ITU H.262] ITU-T Recommendation H.262 / ISO/IEC 13818-2 (2000), Information
Technology – Generic Coding of Moving Pictures and Associated
Audio Information: Video

[PTP] IEEE 1588-2008, IEEE, 24 July 2008,
doi:10.1109/IEEESTD.2008.4579760

[RFC5905] “Network Time Protocol Version 4: Protocol and Algorithms
Specification” –http://tools.ietf.org/html/rfc5905

[SMPTE 312] SMPTE ST 312:2001 – SMPTE STANDARD for Television – Splice
Points for MPEG-2 Transport Streams

[SMPTE 2092-1] SMPTE RP 2092-1:2015 – SMPTE Recommended Practice,
Advertising Digital Identifier (Ad-ID(R)) Representations

[SMPTE 2079] SMPTE RP 2079:2013 – Digital Object Identifier (DOI) Name and
Entertainment ID Registry (EIDR) Identifier Representations

[SMPTE RA] SMPTE Registration Authority, LLC –http://www.smpte-ra.org/

3.3. Published Materials

• No informative references are applicable.

http://www.ad-id.org/
http://www.doi.org/
http://eidr.org/
https://developer.apple.com/streaming
http://id3.org/id3v2.4.0-structure
http://www.isan.org/
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FIEEESTD.2008.4579760
http://tools.ietf.org/html/rfc5905
http://www.smpte-ra.org/

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 12

4. Compliance Notation

shall This word or the adjective “required” means that the item is an
absolute requirement of this document.

shall not This phrase means that the item is an absolute prohibition of this
document.

forbidden This word means the value specified shall never be used.

should

This word or the adjective “recommended” means that there may exist
valid reasons in particular circumstances to ignore this item, but the
full implications should be understood and the case carefully weighted
before choosing a different course.

should not

This phrase means that there may exist valid reasons in particular
circumstances when the listed behavior is acceptable or even useful,
but the full implications should be understood and the case carefully
weighed before implementing any behavior described with this label.

may

This word or the adjective “optional” means that this item is truly
optional. One vendor may choose to include the item because a
particular marketplace requires it or because it enhances the product,
for example; another vendor may omit the same item.

deprecated
Use is permissible for legacy purposes only. Deprecated features may
be removed from future versions of this document. Implementations
should avoid use of deprecated features.

5. Abbreviations and Definitions

5.1. Abbreviations
ADI Asset Distribution Interface
Ad-ID Advertisement Identifier
ATSC Advanced Television Systems Committee.
bslbf Bit string, left bit first, where left is the order in which bit strings are

written.
DTMF Dual tone multi frequency
DVB Digital Video Broadcasting
FIPS Federal Information Processing Standard
ISAN International Standard Audiovisual Number (see [ISO 15706-1] and

[ISO 15706-1 Amd 1])
ISCI Industry Standard Commercial Identifier
MPTS a Multi Program Transport Stream.
MVPD Multi-Channel Video Program Distributors; also cited as “content

distributor”, “distributor”, or affiliate.
NTP Network Time Protocol as defined in IETF [RFC5905].
PID Packet identifier; a unique 13-bit value used to identify the type of

data stored in the packet payload (see [MPEG Systems]).
PMT Program Map Table (see [MPEG Systems]).
PTP Precision Time Protocol as defined in IEEE Std 1588-2008 PTP.
PTS Presentation Time Stamp (see [MPEG Systems]).
rpchof Remainder polynomial coefficients, highest order first.
SCTE Society of Cable Telecommunications Engineers
SPTS a Single Program Transport Stream.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 13

STC System Time Clock
TAI International Atomic Time (TAI, from the French name Temps

Atomique International) This time reference scale was established by
the BIPM (Bureau International des Poids et Mesures) on the basis of
atomic clock readings from various laboratories around the world.

TI Turner Identifier
TID Tribune Identifier
uimsbf Unsigned integer, most significant bit first.
UMID Unique Material Identifier
UPID Unique Program Identifier
URI Uniform Resource Identifier—See [RFC 3986].
UTC Coordinated Universal Time. This is the primary time standard by

which the world regulates clocks and time.
V-ISAN Version-ISAN (core ISAN number plus a version number) (see [ISO

15706-2]).
XML Extensible Markup Language —See [W3C Recommendation,

“Extensible Markup Language (XML) 1.0]

5.2. Definitions
Access Unit A coded representation of a presentation unit (see [ITU H.262]).
Advertisement (also called
“ad”)

An inducement to buy or patronize. As used in the cable industry,
usually with a duration under 2 minutes (sometimes called “short-
form” content).

Analog Cue Tone In an analog system, a signal that is usually either a sequence of
DTMF tones or a contact closure that denotes to ad insertion
equipment that an advertisement avail is about to begin or end.

Avail Time space provided to cable operators by cable programming
services during a program for use by the MVPD operator; the time is
usually sold to local advertisers or used for channel self-promotion.

Bit Stream Format An encoding of information resulting in a compliant MPEG-2
transport stream. See [MPEG Systems].

Break Avail or an actual insertion in progress.
Chapter A short section of a longer program, usually situated to permit a

viewer to easily locate a scene or section of the program.
Component Splice Mode A mode of the cueing message whereby the program_splice_flag is set

to ‘0’, indicating that each PID/component that is intended to be
spliced will be listed separately by the syntax that follows.
Components not listed in the message are not to be spliced.

Content Generic term for television material, either advertisements or
programs.

Content Distributor Typically an MVPD; also cited as “distributor”.
Content Provider Typically a network programmer; also cited as “programmer” or

“provider”.
Cueing Message See message.
Deprecated Use is permissible for legacy purposes only. Deprecated features may

be removed from future versions of the standard. Implementations
should avoid use of deprecated features.

Event A splice event or a viewing event.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 14

In Point A point in the stream, suitable for entry, that lies on an elementary
presentation unit boundary. An In Point is actually between two
presentation units rather than being a presentation unit itself.

In Stream Device A device that receives the transport stream directly and is able to
derive timing information directly from the transport stream.

Message In the context of this document a message is the content of any
splice_info_section.

Multi Program Transport
Stream

A transport stream with multiple programs.

Out of Stream Device A device that receives the cue message from an in stream device over
a separate connection from the transport stream. An out of stream
device does not receive or pass the transport stream directly.

Out Point A point in the stream, suitable for exit, that lies on an elementary
presentation unit boundary. An Out Point is actually between two
presentation units rather than being a presentation unit itself.

payload_unit_start_indicator A bit in the transport packet header that signals, among other things,
that a section begins in the payload that follows (see [MPEG
Systems]).

Placement Opportunity A potentially constrained location relative to digital content where ad
insertion or content alterations can occur. The alterations may include
insertions, replacements, or deletions of content in whole or in part.
These locations, which contain the opportunity for content insertion,
have traditionally been referred to as Avails [SCTE35] for linear video
content; however, placement opportunity refers to address and time
locations where content may be placed, regardless of platform (i.e.
Video in VOD, Banner Images on Menus and ITV channels, etc.).

PID stream All the packets with the same PID within a transport stream.
pointer_field The first byte of a transport packet payload, required when a section

begins in that packet (see [MPEG Systems]).
Presentation Time The time that a presentation unit is presented in the system target

decoder (see [MPEG Systems]).
Presentation Unit A decoded Audio Access Unit or a decoded picture (see [ITU H.262]).
Program A collection of video, audio, and data PID streams that share a

common program number within an MPTS (see [MPEG Systems]). As
used in the context of the segmentation descriptor, a performance or
informative presentation broadcast on television, typically with a
duration over 5 minutes (sometimes called “long-form” content).

Program In Point A group of PID stream In Points that correspond in presentation time.
Program Out Point A group of PID stream Out Points that correspond in presentation

time.
Program Splice Mode A mode of the cueing message whereby the program_splice_flag is set

to ‘1’, indicating that the message refers to a Program Splice Point and
that all PIDs/components of the program are to be spliced.

Program Splice Point A Program In Point or a Program Out Point.
Receiving Device A device that receives or interprets sections conforming to this

standard. Examples of these devices include splicers, ad servers,
segmenters and satellite receivers.

Registration Descriptor Carried in the PMT of a program to indicate that, when signaling
splice events, splice_info_sections shall be carried in a PID stream

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 15

within this program. The presence of the Registration Descriptor
signifies a program’s compliance with this standard.

reserved The term “reserved”, when used in the clauses defining the coded bit
stream, indicates that the value may be used in the future for
extensions to the standard. Unless otherwise specified, all reserved bits
shall be set to ‘1’ and this field shall be ignored by receiving
equipment.

Segment Either a Program, a Chapter, a Provider Advertisement, a Distributor
Advertisement, or an Unscheduled Event as listed in Table 22,
segmentation_type_id.

Single Program Transport
Stream

A transport stream containing a single MPEG program.

Splice Event An opportunity to splice one or more PID streams.
Splice Immediate Mode A mode of the cueing message whereby the splicing device shall

choose the nearest opportunity in the stream, relative to the
splice_info_table, to splice. When not in this mode, the message gives
a “pts_time” that, when modified by pts_adjustment, gives a
presentation time for the intended splicing moment.

Splice Point A point in a PID stream that is either an Out Point or an In Point.
UPID Identifier for the content or content segment that programmers’

systems utilize.
Viewing Event A television program or a span of compressed material within a

service; as opposed to a splice event, which is a point in time.

6. Introduction

6.1. Splice points (Informative)

To enable the splicing of compressed bit streams, this standard defines Splice Points. Splice Points in an
MPEG-2 transport stream provide opportunities to switch elementary streams from one source to another.
They indicate a place to switch or a place in the bit stream where a switch can be made. Splicing at such
splice points may or may not result in good visual and audio quality. That is determined by the
performance of the splicing device.

The use of “advanced” video compression, such as documented by ITU-T H.264/ ISO/IEC 14496-10
(“AVC”) or ITU-T H.265/ ISO/IEC 23008-2(“HEVC”) typically requires advance notice of Splice Points
to permit the video encoder to create a spliceable point in the video elementary stream. In most systems
this is provided by the use of [SCTE 104] to provide a communications path from the programmer’s
Automation System to their Compression System. These AVC and HEVC coding constraints for splice
points are documented in [SCTE 172].

Transport streams are created by multiplexing PID streams. In this standard, two types of Splice Points
for PID streams are defined: Out Points and In Points. In Points are places in the bit streams where it is
acceptable to enter, from a splicing standpoint. Out Points are places where it is acceptable to exit the bit
stream. The grouping of In Points of individual PID streams into Program In Points in order to enable the
switching of entire programs (video with audio) is defined. Program Out Points for exiting a program are
also defined.

Out Points and In Points are imaginary points in the bit stream located between two elementary stream
presentation units. Out Points and In Points are not necessarily transport packet aligned and are not

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 16

necessarily PES packet aligned. An Out Point and an In Point may be co-located; that is, a single
presentation unit boundary may serve as both a safe place to leave a bit stream and a safe place to enter it.

The output of a simple switching operation will contain access unit data from one stream up until its Out
Point followed by data from another stream starting with the first access unit following an In Point. More
complex splicing operations may exist whereby data prior to an Out Point or data after an In Point are
modified by a splicing device. Splicing devices may also insert data between one stream’s Out Point and
the other stream’s In Point. The behavior of splicing devices will not be specified or constrained in any
way by this standard.

6.2. Program splice points (Informative)

Program In Points and Program Out Points are sets of PID stream In Points or Out Points that correspond
in presentation time.

Although Splice Points in a Program Splice Point correspond in presentation time, they do not usually
appear near each other in the transport stream. Because compressed video takes much longer to decode
than audio, the audio Splice Points may lag the video Splice Points by as much as hundreds of
milliseconds and by an amount that can vary during a program.

This standard defines two ways of signaling which splice points within a program are to be spliced. A
program_splice_flag, when true, denotes that the Program Splice Mode is active and that all PIDs of a
program may be spliced (the splice information table PID is an exception; splicing or passage of these
messages is beyond the scope of this standard). A program_splice_flag, when false, indicates that the
Component Splice Mode is active and that the message will specify unambiguously which PIDs are to be
spliced and may give a unique splice time for each. This is required to direct the splicing device to splice
or not to splice various unspecified data types as well as video and audio.

While this standard allows for a unique splice time to be given for each component of a program, it is
expected that most Component Splice Mode messages will utilize one splice time (a default splice time)
for all components as described in section 9. The facility for optionally specifying a separate splice time
for each component is intended to be used when one or more components differ significantly in their start
or stop time relative to other components within the same message. An example would be a downloaded
applet that must arrive at a set-top box several seconds prior to an advertisement.

6.3. Splice events (Informative)

This standard provides a method for in-band signaling of splice events using splice commands to
downstream splicing equipment. Signaling a splice event identifies which Splice Point within a stream to
use for a splice. A splicing device may choose to act or not act upon a signaled event (a signaled event
should be interpreted as an opportunity to splice; not a command). A splice information table carries the
notice of splice event opportunities. Each signaled splice event is analogous to an analog cue tone. The
splice information table incorporates the functionality of cue tones and extends it to enable the scheduling
of splice events in advance.

This standard establishes that the splice information table is carried on a per-program basis in one or more
PID stream(s) with a designated stream_type. The program’s splice information PID(s) are designated in
the program’s Program Map Table (PMT). In this way, the splice information table is switched with the
program as it goes through remultiplexing operations. A common stream_type identifies all PID streams
that carry splice information tables. Remultiplexers or splicers may use this stream_type field to drop
splice information prior to sending the transport stream to the end-user device.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 17

The cue injection equipment may send messages at intervals that do not indicate a splice point to be used
as heartbeat messages which help insure the proper operation of the system. This could be performed by
periodically issuing splice_null() messages or by sending encrypted splice_insert messages generated
with a key that is not distributed. Since cues are currently sent twice per hour on a typical network, an
average interval of 5 minutes would be a reasonable interval. If a message was not received in a 10-
minute interval, a receiving device could alarm an operator to a possible system malfunction (such
behavior would be implementer dependent).

6.4. Content storage considerations (Informative)

The requirements for identifier uniqueness are written expecting the content to be playing in real time. If
the content is stored, then the playback of the content does not place requirements upon the playback
equipment to alter any of these identifiers (such as splice_event_id or segmentation_event_id).
Downstream equipment parsing the identifiers should keep this in mind and, if applicable, rely upon other
confirming information before reacting adversely to a seeming violation of the identifier uniqueness
requirements of this standard.

This standard provides optional tools to assist with segmenting content into shorter sections which may be
either chapters or advertisements. See section 10.3.3.

6.5. PID selection

6.5.1. PID selection (Normative)

Splice Information can be carried in multiple PIDs. The maximum number of PIDs that can carry splice
information shall not exceed 8. These PIDs can be either in the clear (where the transport
scrambling_control bits are set to '00') or scrambled by a CA system. Each cue message PID may include
the cue_identifier_descriptor defined in section 8.2 to describe the splice commands included in the PID.
When multiple PIDs are used to carry splice information, the first cue message PID in the Program Map
Table shall only contain the splice command types 0x00 (splice_null), 0x04 (splice_schedule) and 0x05
(splice_insert). In addition, the splice_event_id shall be unique in all splice information PIDs within the
program.

6.5.2. PID selection (Informative)

While the use of multiple cue message PIDs is an allowed practice, it should be noted that not all
equipment may respond in the same manner to a stream that contains multiple cue message PIDs. Some
equipment may limit the number of PIDs that the equipment can pass or receive. If a system utilizes
multiple PIDs through various devices with the intention of reaching the set-top, it is suggested that
thorough end-to-end testing be performed.

In many systems, the delivery of PIDs that carry splice information beyond the ad insertion equipment in
the head-end is not desired. In these systems, the splicing or multiplexing device will drop any or all of
these messages (PIDs), so they will not be delivered to the set-top. In other systems, it may selectively
pass certain PIDs to enable set-top functionality. A third possibility is that the splicing or multiplexing
device will aggregate the multiple PIDs that carry splice information into a single PID to handle
downstream (set-top) issues with multiple PIDs. The action of ignoring or passing the message is
recommended to be a user provisioned item, with a suitable default behavior chosen by the implementer.

The default operation if a splicing or multiplexing device receives a PID based on this specification with
the scrambling bits set in the header should be to drop that PID and not pass it through to the output. This

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 18

ideally should be a user provisioned operation, as in some instances this PID may be descrambled by a
downstream device.

The delivery of messages outside of the receive location to the customer may be based on business
agreements. An example would be that one programmer wants the cue messages passed to set-tops to
enable a targeted advertising method while a different programmer insists that the messages be dropped to
ensure that a commercial killer may not utilize the messages.

When multiple splicing PIDs are identified in the PMT, the splicing device should process all of these
PIDs. If the cue_identifier_descriptor is utilized, the splicing or multiplexing device may use that
information to be more selective of the PIDs on which it will act.

Some possible reasons for utilizing multiple PIDs for this message include selective delivery of cue
messages for different tiers of advertising or for separating cue messages from segmentation messages.
While one possible method of handling these issues is to use the encryption methods built in to this
standard, many delivery mechanisms can support conditional delivery by PID in a secure fashion. The
delivery equipment (satellite transmitter/receiver, remultiplexer) may PID filter the stream to only allow
one or a small number of the PIDs to be passed in-stream. This method may be used to create multiple
programs in the feed based on entitlement. The decision to use one or more PIDs will be based on the
security required and the CA hardware available on the system.

6.6. Message flow (Informative)

The messages described in this document can originate from multiple sources. They are designed to be
sent in-stream to downstream devices. The downstream devices may act on the messages or send them to
a device that is not in-stream to act upon them. An example would be a splicer communicating via SCTE
30 protocol to an ad server (See [SCTE 30]). The in-stream devices could pass the messages to the next
device in the transmission chain, or they could, optionally, drop the messages. Implementers are urged to
make these decisions user provisioned, rather than arbitrarily hard-coded.

Any device that re-stamps pcr/pts/dts and that passes these cue messages to a downstream device should
modify the pts_time field or the pts_adjustment field in the message in all PIDs conforming to this
standard. Modifying the pts_adjustment field is preferred because the restamping device will not have to
be knowledgeable of the pts_time field that may occur in multiple commands (and possibly in future
commands).

The bandwidth_reservation() message is intended as a message used on a closed path from an origination
system (encoder) to a receiver. It is also intended that this message will be dropped (replaced by a NULL
packet) by the receiver, but this is not required. Should this message reach an in-stream device (e.g., a
splicer) the message should not be forwarded to an out-of-stream device (e.g., Ad Server) and can either
be ignored or passed by an in-stream device. The action of ignoring or passing the message is
recommended to be a user provisioned item, with a suitable default behavior chosen by the implementer.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 19

6.7. Usage Examples (Informative)

The following sections are examples on the usage of SCTE 35 for marking various program and
advertisement segments. The various SCTE 35 Cueing Messages are typically placed in affiliate
programming tiers by the programmer, so an affiliate will only see the cues for which they are authorized.
See Section 14 for sample SCTE 35 Messages.

6.7.1. SCTE 35 Ad Break Example

Figure 1 - SCTE 35 Ad Break Example

When a Content Provider inserts non-program content into a program, it typically falls into one of several
categories.

1) Promotional Items – These are clips that usually promote other programming by the programmer
or may be public service announcements. In children’s programming keeping these intact may be
a regulatory matter and they are typically not replaced.

2) Barter ads – Some programmers purchase content from studios and the studio reserves the right to
insert some advertising. As such, these ads are not usually replaceable.

3) Provider C3 ad – These are programmer inserted advertisements. They are meant to be displayed
to a measured audience and may be replaced on devices that are not measured in the traditional
sense. Some programmers may use out of band methods such as SCTE 224 to allow these ads to
be replaced after a certain amount of time, typically after the C3 windows expires.

4) Provider ad marked for replacement – One version of addressable advertising sells a particular ad
slot to a single advertiser and plays an ad addressed to the most likely viewing demographic
audience (network, show, time of day, etc.) in the original programmer feed. It also marks the
individual ad for possible addressable replacement if the device is capable and if the audience
information to do so is available. One example would be a car company with a minivan ad for a
typical family show, but able to switch to a sports car or truck ad if it is known that the targeted
demographic is not watching.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 20

5) Distributor Local Avail – This is a legacy distributor break. It should be signaled with a
Distributor Placement Opportunity instead of a splice_insert, although currently deployed
systems may not work.

Explanation of the SCTE 35 signaling used:

1) Break Start/End – These are inserted to mark the edges of non-program material. This can be
used, for example, to disable fast forward during the break to insure barter ads and others are seen
and measured. It could also be used to remove the entire break to repurpose the content for future
use.

2) Provider Placement Opportunity Start/End – These signals mark an entire block of ads that may
be replaced. The decision to actually replace the entire break is based on many factors including
live vs restart vs lookback viewing, device, demographics, etc. If the distributor local avail is
embedded inside this break, one should use the MID structure to include information about pod
position and length of the local avail; in this way, one will be able to stitch together all of the
programmer and distributor ads and any required slate for a seamless user presentation.

3) Provider Ad Start/End – If a programmer wants to have a downstream system replace an
individual ad, they can use this to mark that ad. They would typically use an Ad-ID identifier for
the segmentation UPID.

4) splice_insert – This is a legacy construct indicating where the local affiliate breaks occur.

6.7.1. SCTE 35 Program Example

Figure 2 - SCTE 35 Program Example

Ad breaks described in the previous section are typically embedded at various points within the program
content; they are not shown in this diagram.

This example shows the segmentation types used to delineate common programming sequences. The
programmer should set the segmentation Unique Program Identifier (UPID) to a value that can be cross
referenced to the SCTE 224 feed in order to deliver additional information about the program.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 21

WDA is the Web Delivery Allowed flag [See 10.3.3]. Setting this to false (0) indicates that there is a web
blackout. An implementer would need to verify exactly what the programmer means by this, but it is
typically used to indicate anything delivered to a subscriber over the open internet as opposed to a closed
MVPD network.

NRB is the No Regional Blackout flag [See 10.3.3]. When set to false (0), this indicates that this program
is subject to a regional blackout. An implementer would, likely, refer to a SCTE 224 feed or a
programmer or sports league website to determine the appropriate blackout geography.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 22

6.7.1. SCTE 35 Complex example

Break End

t2

t4

t12

t3

t2

t4

T12

t3

Program TimeTime Chapter Break Placement Placement Advertisement

Break Start

1/2

Ad End

Ad Start

1/4

1/4

Ad End

Ad Start

2/4

2/4

Ad End

Ad Start

3/4

3/4

t1 t1

Chapter End

1/3

1/3

t5 t5

t6 t6
Ad End

Ad Start

4/4

4/41/2

Chapter End

Chapter Start

2/3

2/3

PPO End

PPO Start

1/1

DPO End

DPO Start

1/1

DPO End

DPO Start

1/1

1/4 2/4

4/4

Chapter Start

Placement

Events

DPO End

DPO Start

1/1

3/4

End Break 1

t7

t9

t8

t7

t9

t8

Break Start

Ad End

Ad Start

1/4

1/4

Ad End

Ad Start

2/4

2/4

Ad End

Ad Start

3/4

3/4

t10 t10

t11 t11
Ad End

Ad Start

4/4

4/42/2

Chapter End

Chapter Start

3/3

3/3

PPO End

PPO Start

1/1

DPO End

DPO Start

1/1

DPO End

DPO Start

1/1

4/5

2/5

5/5

DPO End

DPO Start

1/1

3/5

Program End

1/1

Program Start

1/1

PPO End

1/5

PPO Start

1/1

1/2 1/2 1/2

1/2

2/2 2/2

2/2 2/2

2/2 2/2

1/1 = segment_num/segments_expected 1/1 = sub_segment_num/sub_segments_expected
Figure 3 - SCTE 35 Program Example

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 23

This is an additional example showing various uses of the distributor placement opportunity in more
complex overlapping scenarios.

7. Notational Conventions

7.1. Normative XML schema

Descriptions of elements and attributes are normative and, when combined with the normative XML
schema document (provided separately), comprise the full normative schema specification. Unless
otherwise specified, the normative text and values assigned to elements or attributes in this specification
shall be constrained by the bit stream equivalent field.

Non-normative schema illustrations and instance examples are included herein for informational purposes
only. Any real or implied usage, semantics, or structure indicated by the schema illustrations and
examples shall not be considered part of the specification.

No XML documents representing the structures defined in the schema are considered conformant unless
they are valid according to the schema document. Additionally, other SCTE 35 standard normative parts
may impose additional rules or restrictions that shall be adhered to in order for XML documents to be
considered conformant to those parts.

In the case where this document and the normative schema document (i.e., the separately provided XML
‘xsd’ file) conflict, this document shall take precedence over the XML schema document.

The inclusion of a normative XML schema document does not require or imply the specific use of the
schema nor a requirement that an XML document be validated.

If the SCTE 35 schema is used in combination with other schemas, it is recommended to utilize the
namespace prefix of “SCTE35”. For example, SCTE35:SpliceInsertType to reference an SCTE 35
SpliceInsert Type.

7.2. Unknown/Unrecognized/Unsupported XML elements and attributes

Generally, unknown, unrecognized or unsupported XML elements and attributes contained within SCTE
35 elements should be ignored during XML document processing. Specifically, these are elements or
attributes which the implementation does not understand or expect. XML parsers that encounter elements
or attributes which are prohibited by a namespace should include exception handling.

7.3. Element order

Element order is constrained by the schemas and shall be preserved throughout processing of the XML
document. In particular, the order of elements affects the end result of the processing. Consequently, an
implementation failing to preserve the order may cause incorrect processing results. Subsequently, the
process of producing an abstract XML Information Set (InfoSet) from a concrete XML document, e.g., by
parsing it, shall always result in the same abstract InfoSet, with the same element order per XML InfoSet
(see [XML InfoSet] for additional information). Any intermediary processing may enhance the XML
document but it shall not alter the abstract InfoSet element order (i.e., the XML elements comprising the
document shall stay in document order).

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 24

7.4. Binary representation in XML

The content of a SpliceInfoSection (See 9.6) may be represented in XML as either a fully parsed structure
or as a binary representation. This choice is provided in the XML Schema as a Signal group (Figure 4).
The binary representation shall be Base64 encoded per [RFC 4648]. The Binary element should be
assumed to contain a SpliceInfoSection unless explicitly indicated by the signalType attribute as
something else. The signalType attribute is provided to allow some flexibility in how the XML Schema is
used for binary representations. Whenever the value of signalType is not “SpliceInfoSection” it shall be
prefixed with the text “private:”

Figure 4 - SignalGroup

8. PMT Descriptors

8.1. Registration descriptor

The registration descriptor (see [MPEG Systems], table 2-46 – Registration Descriptor, clause 2.6.8) is
defined to identify unambiguously the programs that comply with this standard. The registration
descriptor shall be carried in the program_info loop of the PMT for each program that complies with this
standard. It shall reside in all PMTs of all complying programs within a multiplex. The presence of the
registration descriptor also indicates that, when signaling splice events, splice_info_sections shall be
carried in one or more PID stream(s) within this program.

Presence of this registration descriptor in the PMT signals the following:

1. The program elements do not include the splice information table defined by [SMPTE 312].

2. The only descriptors that can be present in the ES_descriptor_loop of the PMT for the PID(s) that carry
the splice_information_table are those that are defined in this specification or user private descriptors.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 25

Note that this descriptor applies to the indicated program and not to the entire multiplex. The content of
the registration descriptor is specified in Table 1 and below:

Table 1 - registration_descriptor()
Syntax Bits Mnemonic

registration descriptor() {
 descriptor tag 8 uimsbf

 descriptor length 8 uimsbf
 SCTE splice format identifier 32 uimsbf
 }

8.1.1. Semantic definition of fields in Registration Descriptor

descriptor_tag – The descriptor_tag is an 8-bit field that identifies each descriptor. For registration
purposes, this field shall be set to 0x05.

descriptor_length – The descriptor_length is an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this registration descriptor,
descriptor_length shall be set to 0x04.

SCTE_splice_format_identifier – SCTE has assigned a value of 0x43554549 (ASCII “CUEI”) to this 4-
byte field to identify the program (within a multiplex) in which it is carried as complying with this
standard.

8.2. Cue Identifier Descriptor

The cue_identifier_descriptor may be used in the PMT to label PIDs that carry splice commands so that
they can be differentiated as to the type or level of splice commands they carry. The
cue_identifier_descriptor, when present, shall be located in the elementary descriptor loop. If the
cue_identifier_descriptor is not utilized, the stream may carry any valid command in this specification.

Table 2 - cue_identifier_descriptor()
Syntax Bits Mnemonic

cue identifier descriptor() {
 descriptor tag 8 uimsbf

 descriptor length 8 uimsbf
 cue stream type 8 uimsbf
 }

8.2.1. Semantic definition of fields in Cue Identifier Descriptor

descriptor_tag – The descriptor_tag is an 8-bit field that identifies each descriptor. For
cue_identifier_descriptor, this field shall be set to 0x8A.

descriptor_length – The descriptor_length in an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length shall be
set to 0x01.

cue_stream_type – This 8-bit field is defined in Table 3.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 26

Table 3 - cue_stream_type values
cue_stream_type PID usage

0x00 splice_insert, splice_null, splice_schedule
0x01 All Commands
0x02 Segmentation
0x03 Tiered Splicing
0x04 Tiered Segmentation
0x05-0x7f Reserved
0x80 - 0xff User Defined

8.2.2. Description of cue_stream_type usage

0x00 – splice_insert, splice_null, splice_schedule – Only these cue messages are allowed in this PID
stream. There shall be a maximum of one PID identified with this cue_stream_type. If this PID exists, it
shall be the first stream complying with this standard in the PMT elementary stream loop.

0x01 – All Commands – Default if this descriptor is not present. All messages can be used in this PID.

0x02 – Segmentation – This PID carries the time_signal command and the segmentation descriptor. It
may also carry all other commands if needed for the application, but the primary purpose is to transmit
content segmentation information.

0x03 – Tiered Splicing – Tiered Splicing refers to an insertion system where the operator provides
different inserted program possibilities in a given avail for different customers. The physical and logical
implementation may be done in several different manners, some of them outside the scope of this
standard.

0x04 – Tiered Segmentation – Tiered Segmentation refers to a system where the operator provides
different program segmentation possibilities for different customers. The physical and logical
implementation may be done in several different manners, some of them outside the scope of this
standard.

0x05-0x7F – Reserved for future extensions to this standard.

0x80-0xFF – User defined range.

8.3. Stream Identifier Descriptor

The stream identifier descriptor may be used in the PMT to label component streams of a service so that
they can be differentiated. The stream identifier descriptor shall be located in the elementary descriptor
loop following the relevant ES_info_length field. The stream identifier descriptor shall be used if either
the program_splice_flag or the program_segmentation_flag is zero. If stream identifier descriptors are
used, a stream identifier descriptor shall be present in each occurrence of the elementary stream loop
within the PMT and shall have a unique component tag within the given program.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 27

Table 4 - stream_identifier_descriptor()
Syntax Bits Mnemonic

stream_identifier_descriptor() {
 descriptor tag 8 uimsbf
 descriptor length 8 uimsbf
 component tag 8 uimsbf
}

8.3.1. Semantic definition of fields in Stream Identifier Descriptor

descriptor_tag – The descriptor_tag is an 8-bit field that identifies each descriptor. For
stream_identifier_descriptor, this field shall be set to 0x52.

descriptor_length – The descriptor_length in an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length shall be
set to 0x01.

component_tag – This 8-bit field identifies the component stream for associating it with a description
given in a component descriptor. Within a program map section each stream identifier descriptor shall
have a different value for this field.

9. Splice information table

9.1. Overview

The splice information table provides command and control information to the splicer. It notifies the
splicer of splice events in advance of those events. It is designed to accommodate ad insertion in network
feeds. In this environment, examples of splice events would include 1) a splice out of a network feed into
an ad, or 2) the splice out of an ad to return to the network feed. The splice information table may be sent
multiple times and splice events may be cancelled. Syntax for a splice_info_section is defined to convey
the splice information table. The splice_info_section is carried on one or more PID stream(s) with the
PID(s) declared in that program’s PMT.

A splice event indicates the opportunity to splice one or more elementary streams within a program. Each
splice event is uniquely identified with a splice_event_id. Splice events may be communicated in three
ways: they may be scheduled ahead of time, a pre-roll warning may be given, or a command may be given
to execute the splice event at specified Splice Points. These three types of messages are sent via the
splice_info_section. The splice_command_type field specifies the message being sent. Depending on the
value of this field, different constraints apply to the remaining syntax.

The following command types are specified: splice_null(), splice_schedule(), splice_insert(),
time_signal() and bandwidth_reservation(). If the Receiving Device does not support a command, it can
ignore the entire splice_info_section.

The splice_null(), splice_schedule() and splice_insert() are the legacy commands used in this standard and
there is substantial installed base that expects to use these commands in order to perform ad insertions. An
alternative mechanism is defined using the time_signal() command to signal splice events in new
applications where there is control over the installed equipment.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 28

9.2. Legacy Command Descriptions

The splice_null() command is provided for extensibility. It can be used as a means of providing a
heartbeat message to downstream splicing equipment.

The splice_schedule() command is a command that allows a schedule of splice events to be conveyed in
advance.

The splice_insert() command shall be sent at least once before each legacy splice point. Packets
containing the entirety of the splice_info_table shall always precede the packet that contains the related
splice point (i.e., the first packet that contains the first byte of an access unit whose presentation time
most closely matches the signaled time in the splice_info_section).

In order to give advance warning of the impending splice (a pre-roll function), the splice_insert()
command could be sent multiple times before the splice point. For example, the splice_insert() command
could be sent at 8, 5, 4 and 2 seconds prior to the packet containing the related splice point. In order to
meet other splicing deadlines in the system, any message received with less than 4 seconds of advance
notice may not create the desired result. The splice_insert() message shall be sent at least once a
minimum of 4 seconds in advance of the desired splice time for a network Out Point condition. It is
recommended that, if a return-to-network (an In Point) message is sent, the same minimum 4 second pre-
roll be provided.

The splice_insert() command provides for an optional break_duration() structure to identify the length of
the commercial break. It is recommended that splice_insert() messages with the out_of_network_indicator
set to 1 (a network Out Point) include a break_duration() structure to provide the splicer with an
indication of when the network In Point will occur. The break_duration() structure provides for an
optional auto_return flag that, when set to 1, indicates that the splicer is to return to the network at the end
of the break (defined as Auto Return Mode, refer to section 9.9.2.2). It is recommended that this Auto
Return Mode be used to support dynamic avail durations.

The bandwidth_reservation() command is provided to allow command insertion devices to utilize a
consistent amount of transport stream bandwidth. Descriptors may be used in this command, but they
cannot be expected to be processed and sent downstream to provide signaling information.

9.3. Time Signal Command

The time_signal() command is provided for extensibility by adding descriptors while preserving the
precise timing allowed in the splice_insert() command. This is to allow for new features utilizing the
timing capabilities of this specification while causing minimal impact to the splicing devices that conform
to this specification.

A splice_insert() command typically instructs an encoder to condition the stream for a splice event. When
a time_signal() command is used to signal splice events, it shall carry one or more segmentation
descriptors() with additional information to determine what may need to be done to the stream. For
example, a segmentation_descriptor() with a Provider Placement Opportunity or Program Start would
likely indicate that the stream should be conditioned at the time indicated. There may also be out of band
communications that can control the implementation for example [SCTE 224] and/or [SCTE 250].

9.4. Command Changes

There are two methods for changing the parameters of a command once it has been issued. One method is
to cancel the issued command by sending a splice_info_section with the splice_event_cancel_indicator set

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 29

and then to send a new splice_info_section with the correct/new parameters. The other method is to
simply send a subsequent message with the new data (without canceling the old message via a cue
message that has the splice_event_cancel_indicator bit set).

9.5. Time base discontinuities

In the case where a system time base discontinuity is present, packets containing a splice_insert() or
time_signal() command with time expressed in the new time base shall not arrive prior to the occurrence
of the time base discontinuity. Packets containing a splice_insert() or time_signal() command with time
expressed in the previous time base shall not arrive after the occurrence of the time base discontinuity.
See [ISO 13818–4].

The complete syntax is presented below, followed by definition of terms, followed by constraints.

9.6. Splice info section

The splice_info_section shall be carried in transport packets whereby only one section or partial section
may be in any transport packet. Splice_info_sections shall always start at the beginning of a transport
packet payload. When a section begins in a transport packet and this is the first packet of the
splice_info_section, the pointer_field shall be present and equal to 0x00 and the
payload_unit_start_indicator bit shall be equal to one (per the requirements of section syntax usage per
[MPEG Systems]).

Table 5 - splice_info_section()
Syntax Bits Mnemonic Encrypted

splice_info_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 private_indicator 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 protocol_version 8 uimsbf
 encrypted_packet 1 bslbf
 encryption_algorithm 6 uimsbf
 pts_adjustment 33 uimsbf
 cw_index 8 uimsbf
 tier 12 bslbf
 splice_command_length 12 uimsbf
 splice_command_type 8 uimsbf E
 if(splice_command_type == 0x00)
 splice_null() E
 if(splice_command_type == 0x04)
 splice_schedule() E
 if(splice_command_type == 0x05)
 splice_insert() E
 if(splice_command_type == 0x06)
 time_signal() E
 if(splice_command_type == 0x07)
 bandwidth_reservation() E
 if(splice_command_type == 0xff)
 private_command() E

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 30

Syntax Bits Mnemonic Encrypted
 descriptor_loop_length 16 uimsbf E
 for(i=0; i<N1; i++)
 splice_descriptor() E
 for(i=0; i<N2; i++)
 alignment_stuffing 8 bslbf E
 if(encrypted_packet)
 E_CRC_32 32 rpchof E
 CRC_32 32 rpchof
}

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 31

The XML schema for splice_info_section is shown in Figure 5.

Figure 5 - SpliceInfoSection

9.6.1. Semantic definition of fields in splice_info_section()

table_id – This is an 8-bit field. Its value shall be 0xFC.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 32

There is no entry in the XML schema for table_id. The value is implicit when transforming to or from an
XML representation of the splice_info_section.

section_syntax_indicator – The section_syntax_indicator is a 1-bit field that should always be set to ‘0’,
indicating that MPEG short sections are to be used.

There is no entry in the XML schema for section_syntax_indicator. The value is a constant when
converting an XML representation of the splice_info_section to Bit Stream Format.

private_indicator – This is a 1-bit flag that shall be set to 0.

There is no entry in the XML schema for private_indicator. The value is a constant when converting an
XML representation of the splice_info_section to Bit Stream Format.

section_length – This is a 12-bit field specifying the number of remaining bytes in the
splice_info_section, immediately following the section_length field up to the end of the
splice_info_section. The value in this field shall not exceed 4093.

There is no entry in the XML schema for section_length. The value shall be derived when converting an
XML representation of the splice_info_section to Bit Stream Format.

protocol_version – An 8-bit unsigned integer field whose function is to allow, in the future, this table
type to carry parameters that may be structured differently than those defined in the current protocol. At
present, the only valid value for protocol_version is zero. Non-zero values of protocol_version may be
used by a future version of this standard to indicate structurally different tables.

@protocolVersion [Optional; xsd:unsignedByte] If present, this attribute shall be set to 0.

encrypted_packet – When this bit is set to ‘1’, it indicates that portions of the splice_info_section,
starting with splice_command_type and ending with and including E_CRC_32, are encrypted. When this
bit is set to ‘0’, no part of this message is encrypted. The potentially encrypted portions of the
splice_info_table are indicated by an E in the Encrypted column of Table 5.

There is no entry in the XML schema for encrypted_packet. When converting an XML representation of
the splice_info_section to Bit Stream Format, this value shall be set to 1 if the EncryptedPacket Element
is present; otherwise, the value shall be set to 0. When creating the SpliceInfoSection Element, the
EncryptedPacket Element shall be populated if encryption is desired. The encrypted attributes shall only
apply to the generation of the Bit Stream Format of the splice_info_section. The encrypted attributes may
be populated when converting a splice_info_section to XML, but the actual data in the XML shall not be
encrypted.

encryption_algorithm – This 6-bit unsigned integer specifies which encryption algorithm was used to
encrypt the current message. When the encrypted_packet bit is zero, this field is present but undefined.
Refer to section 11, and specifically Table 27 - Encryption algorithm, for details on the use of this field.

@encryptionAlgorithm [Conditional Mandatory, xsd:unsignedByte] If the EncryptedPacket Element is
present this value shall be provided.

pts_adjustment – A 33-bit unsigned integer that appears in the clear and that shall be used by a splicing
device as an offset to be added to the (sometimes) encrypted pts_time field(s) throughout this message, to
obtain the intended splice time(s). When this field has a zero value, then the pts_time field(s) shall be
used without an offset. Normally, the creator of a cueing message will place a zero value into this field.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 33

This adjustment value is the means by which an upstream device, which restamps pcr/pts/dts, may convey
to the splicing device the means by which to convert the pts_time field of the message to a newly imposed
time domain.

It is intended that the first device that restamps pcr/pts/dts and that passes the cueing message will insert a
value into the pts_adjustment field, which is the delta time between this device’s input time domain and
its output time domain. All subsequent devices, which also restamp pcr/pts/dts, may further alter the
pts_adjustment field by adding their delta time to the field’s existing delta time and placing the result
back in the pts_adjustment field. Upon each alteration of the pts_adjustment field, the altering device
shall recalculate and update the CRC_32 field.

The pts_adjustment shall, at all times, be the proper value to use for conversion of the pts_time field to
the current time-base. The conversion is done by adding the two fields. In the presence of a wrap or
overflow condition, the carry shall be ignored.

@ptsAdjustment [Optional, PTSType] See section 13.2.

cw_index – An 8-bit unsigned integer that conveys which control word (key) is to be used to decrypt the
message. The splicing device may store up to 256 keys previously provided for this purpose. When the
encrypted_packet bit is zero, this field is present but undefined.

@cwIndex [Conditional Mandatory, xsd:unsignedByte] If the EncryptedPacket Element is present this
value shall be provided.

tier – A 12-bit value used by the SCTE 35 message provider to assign messages to authorization tiers.
This field may take any value between 0x000 and 0xFFF. The value of 0xFFF provides backwards
compatibility and shall be ignored by downstream equipment. When using tier, the message provider
should keep the entire message in a single transport stream packet.

@tier [Optional, xsd:unsignedShort]

splice_command_length – A 12-bit length of the splice command. The length shall represent the number
of bytes following the splice_command_type up to, but not including the descriptor_loop_length. Devices
that are compliant with this version of the standard shall populate this field with the actual length. The
value of 0xFFF provides backwards compatibility and shall be ignored by downstream equipment.

There is no entry in the XML schema for splice_command_length. The value shall be derived when
converting an XML representation of the splice_info_section to Bit Stream Format.

splice_command_type – An 8-bit unsigned integer which shall be assigned one of the values shown in
column labeled splice_command_type value in Table 6.

There is no entry in the XML schema for splice_command_type. The value is implicit when transforming
to or from an XML representation of the splice_info_section based on the specific command Element
supplied. The Element names can be found in the XML Element column in Table 6.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 34

Table 6 - splice_command_type values
Command splice_command_type value XML Element

splice_null 0x00 SpliceNull
Reserved 0x01
Reserved 0x02
Reserved 0x03
splice_schedule 0x04 SpliceSchedule
splice_insert 0x05 SpliceInsert
time_signal 0x06 TimeSignal
bandwidth_reservation 0x07 BandwidthReservation
Reserved 0x08 - 0xfe
private_command 0xff PrivateCommand

descriptor_loop_length – A 16-bit unsigned integer specifying the number of bytes used in the splice
descriptor loop immediately following.

There is no entry in the XML schema for descriptor_loop_length. The value shall be derived when
converting an XML representation of the splice_info_section to Bit Stream Format.

alignment_stuffing – When encryption is used, this field is a function of the particular encryption
algorithm chosen. Since some encryption algorithms require a specific length for the encrypted data, it is
necessary to allow the insertion of stuffing bytes. For example, DES requires a multiple of 8 bytes be
present in order to encrypt to the end of the packet. This allows standard DES to be used, as opposed to
requiring a special version of the encryption algorithm.

When encryption is not used, this field shall not be used to carry valid data, but may be present.

There is no entry in the XML schema for alignment_stuffing. The required data shall be derived when
converting an XML representation of the splice_info_section to Bit Stream Format.

E_CRC_32 – This is a 32-bit field that contains the CRC value that gives a zero output of the registers in
the decoder defined in [MPEG Systems]after processing the entire decrypted portion of the
splice_info_section. This field is intended to give an indication that the decryption was performed
successfully. Hence, the zero output is obtained following decryption and by processing the fields
splice_command_type through E_CRC_32.

There is no entry in the XML schema for E_CRC_32. The value shall be derived when converting an
XML representation of the splice_info_section to Bit Stream Format.

CRC_32 – This is a 32-bit field that contains the CRC value that gives a zero output of the registers in the
decoder defined in [MPEG Systems]after processing the entire splice_info_section, which includes the
table_id field through the CRC_32 field. The processing of CRC_32 shall occur prior to decryption of the
encrypted fields and shall utilize the encrypted fields in their encrypted state.

There is no entry in the XML schema for CRC_32. The value shall be derived when converting an XML
representation of the splice_info_section to Bit Stream Format.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 35

9.7. Splice commands

9.7.1. splice_null()

The splice_null() command is provided for extensibility of the standard. The splice_null() command
allows a splice_info_table to be sent that can carry descriptors without having to send one of the other
defined commands. This command may also be used as a “heartbeat message” for monitoring cue
injection equipment integrity and link integrity.

Table 7 - splice_null()
Syntax Bits Mnemonic

splice_null() {
}

The XML schema for splice_null is shown in Figure 6.

Figure 6 - SpliceNull

9.7.2. splice_schedule()

The splice_schedule() command is provided to allow a schedule of splice events to be conveyed in
advance.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 36

Table 8 - splice_schedule()
Syntax Bits Mnemonic

splice_schedule() {
 splice_count 8 uimsbf
 for (i=0; i<splice_count; i++) {
 splice_event_id 32 uimsbf
 splice_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if (splice_event_cancel_indicator == ‘0’) {
 out_of_network_indicator 1 bslbf
 program_splice_flag 1 bslbf
 duration_flag 1 bslbf
 reserved 5 bslbf
 if (program_splice_flag == ‘1’)
 utc_splice_time 32 uimsbf
 if (program_splice_flag == ‘0’) {
 component_count 8 uimsbf
 for(j=0;j<component_count;j++) {
 component_tag 8 uimsbf
 utc_splice_time 32 uimsbf
 }
 }
 if (duration_flag)
 break_duration()
 unique_program_id 16 uimsbf
 avail_num 8 uimsbf
 avails_expected 8 uimsbf
 }
 }
}

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 37

The XML schema for splice_schedule is shown in Figure 7.

Figure 7 - SpliceSchedule

9.7.2.1. Semantic definition of fields in splice_schedule()

splice_count – An 8-bit unsigned integer that indicates the number of splice events specified in the loop
that follows.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 38

There is no entry in the XML schema for splice_count. The value shall be derived when converting an
XML representation of the splice_schedule to Bit Stream Format. splice_count shall be set to the count of
Event Elements supplied in the XML document.

splice_event_id – A 32-bit unique splice event identifier.

@spliceEventId [Optional, xsd:unsignedInt]

splice_event_cancel_indicator – A 1-bit flag that, when set to ‘1’, indicates that a previously sent splice
event, identified by splice_event_id, has been cancelled.

@spliceEventCancelIndicator [Optional; xsd:boolean] A value of TRUE shall be equivalent to a value of
‘1’ and FALSE shall be equivalent to a value of ‘0’. If omitted, set splice_event_cancel_indicator to 0
when generating an SCTE 35 splice_schedule message.

out_of_network_indicator – A 1-bit flag that, when set to ‘1’, indicates that the splice event is an
opportunity to exit from the network feed and that the value of utc_splice_time shall refer to an intended
Out Point or Program Out Point. When set to ‘0’, the flag indicates that the splice event is an opportunity
to return to the network feed and that the value of utc_splice_time shall refer to an intended In Point or
Program In Point.

@outOfNetworkIndicator [Optional, xsd:boolean] A value of TRUE shall be equivalent to a value of ‘1’
for out_of_network_indicator in Bit Stream Format.

program_splice_flag – A 1-bit flag that, when set to ‘1’, indicates that the message refers to a Program
Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components of the program
are to be spliced. When set to ‘0’, this field indicates that the mode is the Component Splice Mode
whereby each component that is intended to be spliced will be listed separately by the syntax that follows.

There is no entry in the XML schema for program_splice_flag. The value of program_splice_flag shall be
set to ‘1’ when converting an XML representation of the splice_schedule to Bit Stream Format if the
Program Element in the Event Element is specified; otherwise, the value of program_splice_flag shall be
set to ‘0’.

duration_flag – A 1-bit flag that indicates the presence of the break_duration() field.

There is no entry in the XML schema for duration_flag. The value shall be derived when converting an
XML representation of the splice_schedule to Bit Stream Format. duration_flag shall be set to ‘1’ if a
BreakDuration Element is supplied within the Event Element; otherwise, duration_flag shall be set to ‘0’.
See section 9.8.2 for a description of the BreakDuration Element.

utc_splice_time – A 32-bit unsigned integer quantity representing the time of the signaled splice event as
the number of seconds since 00 hours UTC, January 6th, 1980, with the count of intervening leap seconds
included. The utc_splice_time may be converted to UTC without the use of the GPS_UTC_offset value
provided by the System Time table. The utc_splice_time field is used only in the splice_schedule()
command.

@utcSpliceTime [Required, xsd:dateTime] utcSplice time applies to both Program Splice Mode and
Component Splice Mode.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 39

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary PID
stream data in the loop that follows. Components are equivalent to elementary PID streams. If
program_splice_flag == ‘0’ then the value of component_count shall be greater than or equal to 1.

There is no entry in the XML schema for component_count. For Component Splice Mode, the value shall
be derived when converting an XML representation of the splice_schedule to Bit Stream Format.
component_count shall be set to the count of Component Elements supplied within the Event Element in
the XML document.

component_tag – An 8-bit value that identifies the elementary PID stream containing the Splice Point
specified by the value of splice_time() that follows. The value shall be the same as the value used in the
stream_identifier_descriptor() to identify that elementary PID stream.

@componentTag [Required, xsd:unsignedByte]

unique_program_id – This value should provide a unique identification for a viewing event within the
service. Note: See [SCTE 118-2] or [SCTE 224] for guidance in setting values for this field.

@uniqueProgramId [Optional, xsd:unsignedShort]

avail_num – (previously ‘avail’) This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing event. This
value is expected to reset to one for the first avail in a new viewing event. This field is expected to
increment for each new avail. It may optionally carry a zero value to indicate its non-usage.

@availNum [Optional, xsd:unsignedByte]

avails_expected – (previously ‘avail_count’) This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the avail_num
field has no meaning.

@availsExpected [Optional, xsd:unsignedByte]

9.7.3. splice_insert()

The splice_insert() command shall be sent at least once for every splice event. Please reference section
6.3 for the use of this message.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 40

Table 9 - splice_insert()
Syntax Bits Mnemonic

splice_insert() {
 splice_event_id 32 uimsbf
 splice_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if(splice_event_cancel_indicator == ‘0’) {
 out_of_network_indicator 1 bslbf
 program_splice_flag 1 bslbf
 duration_flag 1 bslbf
 splice_immediate_flag 1 bslbf
 reserved 4 bslbf
 if((program_splice_flag == ‘1’) && (splice_immediate_flag == ‘0’))
 splice_time()
 if(program_splice_flag == ‘0’) {
 component_count 8 uimsbf
 for(i=0;i<component_count;i++) {
 component_tag 8 uimsbf
 if(splice_immediate_flag == ‘0’)
 splice_time()
 }
 }
 if(duration_flag == ‘1’)
 break_duration()
 unique_program_id 16 uimsbf
 avail_num 8 uimsbf
 avails_expected 8 uimsbf
 }
}

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 41

The XML schema for splice_insert is shown in Figure 8.

Figure 8 - SpliceInsert

9.7.3.1. Semantic definition of fields in splice_insert()

splice_event_id – A 32-bit unique splice event identifier.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 42

@spliceEventId [Optional; xsd:unsignedInt]

splice_event_cancel_indicator – A 1-bit flag that, when set to ‘1’, indicates that a previously sent splice
event, identified by splice_event_id, has been cancelled.

@spliceEventCancelIndicator [Optional; xsd:boolean] A value of TRUE shall be equivalent to a value of
‘1’ and FALSE shall be equivalent to a value of ‘0’. If omitted, set splice_event_cancel_indicator to 0
when generating an SCTE 35 splice_insert message.

out_of_network_indicator – A 1-bit flag that, when set to ‘1’, indicates that the splice event is an
opportunity to exit from the network feed and that the value of splice_time(), as modified by
pts_adjustment, shall refer to an intended Out Point or Program Out Point. When set to ‘0’, the flag
indicates that the splice event is an opportunity to return to the network feed and that the value of
splice_time(), as modified by pts_adjustment, shall refer to an intended In Point or Program In Point.

@outOfNetworkIndicator [Optional; xsd:boolean]

program_splice_flag – A 1-bit flag that, when set to ‘1’, indicates that the message refers to a Program
Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components of the program
are to be spliced. When set to ‘0’, this field indicates that the mode is the Component Splice Mode
whereby each component that is intended to be spliced will be listed separately by the syntax that follows.

There is no entry in the XML schema for program_splice_flag. The value of program_splice_flag shall be
set to ‘1’ when converting an XML representation of the splice_insert to Bit Stream Format if the
Program Element in the Event Element is specified; otherwise, the value of program_splice_flag shall be
set to ‘0’.

duration_flag – A 1-bit flag that, when set to ‘1’, indicates the presence of the break_duration() field.

There is no entry in the XML schema for duration_flag. The value shall be derived when converting an
XML representation of the splice_insert to Bit Stream Format. duration_flag shall be set to ‘1’ if a
BreakDuration Element is supplied within the SpliceInsert Element; otherwise, duration_flag shall be set
to ‘0’. See section 9.8.2 for a description of the BreakDuration Element.

splice_immediate_flag –When this flag is ‘1’, it indicates the absence of the splice_time() field and that
the splice mode shall be the Splice Immediate Mode, whereby the splicing device shall choose the
nearest opportunity in the stream, relative to the splice information packet, to splice. When this flag is ‘0’,
it indicates the presence of the splice_time() field in at least one location within the splice_insert()
command.

@spliceImmediateFlag [Optional; xsd:boolean]

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary PID
stream data in the loop that follows. Components are equivalent to elementary PID streams. If
program_splice_flag == ‘0’ then the value of component_count shall be greater than or equal to 1.

There is no entry in the XML schema for component_count. For Component Splice Mode, the value shall
be derived when converting an XML representation of the splice_insert to Bit Stream Format.
component_count shall be set to the count of Component Elements supplied within the SpliceInsert
Element in the XML document.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 43

component_tag – An 8-bit value that identifies the elementary PID stream containing the Splice Point
specified by the value of splice_time() that follows. The value shall be the same as the value used in the
stream_identifier_descriptor() to identify that elementary PID stream.

@componentTag [Required, xsd:unsignedByte]

unique_program_id – This value should provide a unique identification for a viewing event within the
service. Note: See [SCTE 118-2] for guidance in setting values for this field.

@uniqueProgramId [Optional; xsd:unsignedShort]

avail_num – (previously ‘avail’) This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing event. This
value is expected to reset to one for the first avail in a new viewing event. This field is expected to
increment for each new avail. It may optionally carry a zero value to indicate its non-usage.

@availNum [Optional, xsd:unsignedByte]

avails_expected – (previously ‘avail_count’) This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the avail field
has no meaning.

@availsExpected [Optional, xsd:unsignedByte]

9.7.4. time_signal()

The time_signal() provides a time synchronized data delivery mechanism. The syntax of the time_signal()
allows for the synchronization of the information carried in this message with the System Time Clock
(STC). The unique payload of the message is carried in the descriptor, however the syntax and transport
capabilities afforded to splice_insert() messages are also afforded to the time_signal(). The carriage
however can be in a different PID than that carrying the other cue messages used for signaling splice
points.

If the time_specified_flag is set to 0, indicating no pts_time in the message, then the command shall be
interpreted as an immediate command. It must be understood that using it in this manner will cause an
unspecified amount of accuracy error.

Note: Since the time_signal() command utilizes descriptors for most of the specific information, this
command could exceed one MPEG transport packet in length. Implementors are warned that legacy
equipment may require this command to completely fit in one transport packet. This will not always be
possible in some situations, for example, where the unique information is long or where another
specification is used for the definition of this unique information.

Table 10 - time_signal()
Syntax Bits Mnemonic

time_signal() {
 splice_time()
}

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 44

The XML schema for time_signal is shown in Figure 9.

Figure 9 - TimeSignal

9.7.4.1. Semantic definition of time_signal()

The time_signal() provides a uniform method of associating a pts_time sample with an arbitrary
descriptor (or descriptors) as provided by the splice_info_section syntax (see Table 5). Please refer to
section 10 for Splice Descriptors.

9.7.5. bandwidth_reservation()

The bandwidth_reservation() command is provided for reserving bandwidth in a multiplex. A typical
usage would be in a satellite delivery system that requires packets of a certain PID to always be present at
the intended repetition rate to guarantee a certain bandwidth for that PID. This message differs from a
splice_null() command so that it can easily be handled in a unique way by receiving equipment (i.e.
removed from the multiplex by a satellite receiver). If a descriptor is sent with this command, it can not
be expected that it will be carried through the entire transmission chain and it should be a private
descriptor that is utilized only by the bandwidth reservation process.

Table 11 - bandwidth_reservation()
Syntax Bits Mnemonic

bandwidth_reservation() {
}

The XML schema for bandwidth_reservation is shown in Figure 10.

Figure 10 – BandwidthReservation

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 45

9.7.6. private_command()

The private_command() structure provides a means to distribute user-defined commands using the SCTE
35 protocol. The first bit field in each user-defined command is a 32-bit identifier, unique for each
participating vendor. Receiving equipment should skip any splice_info_section() messages containing
private_command() structures with unknown identifiers.

Table 12 - private_command()
Syntax Bits Mnemonic

private_command() {
 identifier 32 uimsbf
 for(i=0; i<N; i++) {
 private_byte 8 uimsbf
 }
}

The XML schema for private_command is shown in Figure 11.

Figure 11 - PrivateCommand

identifier – The identifier is a 32-bit field as defined in ISO/IEC 13818-1 [MPEG Systems], section 2.6.8
and 2.6.9, for the registration_descriptor() format_identifier. Only identifier values registered and
recognized by SMPTE Registration Authority, LLC should be used (See [SMPTE RA]). Its use in the
private_command() structure shall scope and identify only the private information contained within this
command. This 32-bit number is used to identify the owner of the command.

@identifier [Optional; xsd:unsignedInt]

private_byte – The remainder of the descriptor is dedicated to data fields as required by the descriptor
being defined.

PrivateBytes [Optional; xsd:hexBinary] If present, the PrivateBytes shall contain the hex binary
representation of the private data.

Private means for communicating detailed vendor-unique ancillary information should be the only use of
such data, and it shall not provide the same result as a standardized command.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 46

9.8. Time

9.8.1. splice_time()

The splice_time() structure, when modified by pts_adjustment, specifies the time of the splice event.

Table 13 - splice_time()
Syntax Bits Mnemonic

splice_time() {
 time_specified_flag 1 bslbf
 if(time_specified_flag == 1) {
 reserved 6 bslbf
 pts_time 33 uimsbf
 }
 else
 reserved 7 bslbf
}

The XML schema for splice_time() is shown in Figure 12.

Figure 12 - SpliceTime

9.8.1.1. Semantic definition of fields in splice_time()

time_specified_flag – A 1-bit flag that, when set to ‘1’, indicates the presence of the pts_time field and
associated reserved bits.

There is no entry in the XML schema for time_specified_flag. The value of time_specified_flag shall be
set to ‘1’ when converting an XML representation of the splice_insert to Bit Stream Format if the the
ptsTime attribute is present in the SpliceTime Element; otherwise, the value of time_specified_flag shall
be set to ‘0’.

pts_time – A 33-bit field that indicates time in terms of ticks of the program’s 90 kHz clock. This field,
when modified by pts_adjustment, represents the time of the intended splice point.

@ptsTime [Optional; PTSType] See section 13.2 for a description of PTSType.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 47

9.8.2. break_duration()

The break_duration() structure specifies the duration of the commercial break(s). It may be used to give
the splicer an indication of when the break will be over and when the network In Point will occur.

Table 14 - break_duration()
Syntax Bits Mnemonic

break_duration() {
 auto_return 1 bslbf
 reserved 6 bslbf
 duration 33 uimsbf
}

The XML schema for break_duration() is shown in Figure 13

Figure 13 - BreakDuration

9.8.2.1. Semantic definition of fields in break_duration()

auto_return – A 1-bit flag that, when set to ‘1’, denotes that the duration shall be used by the splicing
device to know when the return to the network feed (end of break) is to take place. A splice_insert()
command with out_of_network_indicator set to 0 is not intended to be sent to end this break. When this
flag is ‘0’, the duration field, if present, is not required to end the break because a new splice_insert()
command will be sent to end the break. In this case, the presence of the break_duration field acts as a
safety mechanism in the event that a splice_insert() command is lost at the end of a break.

@autoReturn [Required; xsd:boolean]

duration – A 33-bit field that indicates elapsed time in terms of ticks of the program’s 90 kHz clock.

@duration [Required; PTSType] See Section 13.2 for a description of PTSType.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 48

9.9. Constraints

9.9.1. Constraints on splice_info_section()

The splice_info_section shall be carried in one or more PID stream(s) that are specific to a program and
referred to in the PMT. The splice_info_section PID(s) shall be identified in the PMT by stream_type
equal to 0x86.

The splice_info_section carried in one or more PID stream(s) referenced in a program’s PMT shall
contain only information about splice events that occur in that program.

A splice event shall be defined by a single value of splice_event_id.

If the Component Splice Mode will be used, then each elementary PID stream shall be identified by a
stream_identifier_descriptor carried in the PMT loop, one for each PID. The stream_identifier_descriptor
shall carry a component_tag, which uniquely corresponds to one PID stream among those contained
within a program and listed in the PMT for that program.

Any splice_event_id that is sent in a splice_info_section using a splice_schedule() command shall be sent
again prior to the event using a splice_insert() command. Hence, there shall be a correspondence between
the splice_event_id values chosen for particular events signaled by the splice_schedule() command
(distant future) and splice_event_id values utilized in the splice_insert() command (near future) to
indicate the same events.

splice_event_id values do not need to be sent in an incrementing order in subsequent messages nor must
they increment chronologically. splice_event_id values may be chosen at random. When utilizing the
splice_schedule() command, splice_event_id values shall be unique over the period of the
splice_schedule() command. A splice_event_id value may be re-used when its associated splice time has
passed.

When the splice_immediate_flag is set to 1, the time to splice shall be interpreted as the current time.
This is called the “Splice Immediate Mode”. When this form is used with the splice_insert() command,
the splice may occur at the nearest (prior or subsequent) opportunity that is detected by the splicer. The
“Splice Immediate Mode” may be used for both splicing entry and exit points, i.e. for both states of
out_of_network_indicator.

It shall be allowed that any avail may be ended with a Program Splice Mode message, a Component
Splice Mode message or no message (whereby the break_duration is reached), regardless of the nature of
the message at the beginning of the avail.

9.9.2. Constraints on the interpretation of time

9.9.2.1. Constraints on splice_time() for splice_insert()

For splice_command_type equal to 0x05 (splice_insert()), the following constraints on splice_time() shall
apply:

At least one message for a network Out Point shall arrive at least 4 seconds in advance of the signaled
splice time (pts_time as modified by pts_adjustment) if the time is specified. A Splice Immediate Mode
message is allowed for a network Out Point, but the actual splice time is not defined and it is
recommended that Splice Immediate Mode messages only be used for the early termination of breaks.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 49

When non-Splice Immediate Mode cue messages are used for network In Points, the cue message shall
arrive at the splicer before the arrival of the signaled In Point picture at the receiver.

An Out Point lies between two presentation units. The intended Out Point of a signaled splice event shall
be the Out Point that is immediately prior to the presentation unit whose presentation time most closely
matches the signaled pts_time as modified by pts_adjustment.

An In Point lies between two presentation units. The intended In Point of a signaled splice event shall be
the In Point that is immediately prior to the presentation unit whose presentation time most closely
matches the signaled pts_time as modified by pts_adjustment.

When the Component Splice Mode is in effect and the out_of_network_indicator is ‘1’ (the beginning of
a break), each component listed in the splice_insert() component loop shall be switched from the network
component to the splicer supplied component at the time indicated. Components not listed in the
component loop of the message will remain unchanged: if a splicer output component was the network
component then it will remain the network component; if a splicer output component was the splicer
supplied component then it will remain the splicer supplied component.

When the Component Splice Mode is in effect and the out_of_network_indicator is ‘0’ (the end of a
break), each component listed in the splice_insert() component loop shall be switched from the splicer
supplied component to the network component at the time indicated. Components not listed in the
component loop of the message will remain unchanged: if a splicer output component was the network
component then it will remain the network component; if a splicer output component was the splicer
supplied component then it will remain the splicer supplied component.

When the Component Splice Mode is in effect and the Splice Immediate Mode is not in effect, the first
component listed in the component loop of the splice_insert() command shall have a valid pts_time in its
associated splice_time() and this pts_time is referred to as the default pts_time. Subsequent components
listed in the component loop of the same message, which don’t have an associated pts_time, shall utilize
this default pts_time. It shall be allowed that any and all components following the first listed component
of a splice_insert() command may contain a unique pts_time that is different from the default pts_time.

In the Component Splice Mode, all pts_time values given in the splice_insert component loop shall be
modified by the pts_adjustment field to obtain each intended value for the signaled Out Point or In Point.
The pts_adjustment, provided by any device that generates or modifies a pts_adjustment field value, shall
apply to all pts_time fields in the message.

9.9.2.2. Constraints on break_duration() for splice_insert()

For splice_command_type equal to 0x05 (insert) the following constraints on break_duration() shall
apply:

The value given in break_duration() is interpreted as the intended duration of the commercial break. It is
an optional field to be used when the out_of_network_indicator equals 1. It may be used in the same
splice_insert() command that specifies the start time of the break, so that the splicer can calculate the time
when the break will be over.

Breaks may be terminated by issuing a splice_insert() command with out_of_network_indicator set to 0.
A splice_time() may be given or the Splice Immediate Mode may be used. When a break_duration was
given at the start of the break (where the auto_return was set to zero), the break_duration value may be
utilized as a backup mechanism for insuring that a return to the network actually happens in the event of a
lost cueing packet.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 50

Breaks may also be terminated by giving a break duration at the beginning of a break and relying on the
splicing device to return to the network feed at the proper time. The auto_return flag shall be 1. This will
be referred to as the Auto Return Mode. Auto Return Mode breaks do not require and do not disallow cue
messages at the end of the break with out_of_network_indicator set to 0. Hence, a receiving device should
not expect a cue message at the end of a break in order to function properly. Auto Return Mode breaks
may however be terminated early. To end the break prematurely, a second splice_insert() command may
be given, where the out_of_network_indicator equals 0. The new time of the back to network splice may
be given by an updated splice_time(), or the Splice Immediate Mode message may be used. A cue
message with out_of_network_indicator set to 0 shall always override the duration field of a previous cue
message (with out_of_network_indicator set to 1) if that break’s signaled duration is still under way.

10. Splice Descriptors

10.1. Overview

The splice_descriptor is a prototype for adding new fields to the splice_info_section. All descriptors
included use the same syntax for the first six bytes. In order to allow private information to be added, the
‘identifier’ code is available. This removes the need for a registration descriptor in the descriptor loop.

Any receiving equipment should skip any descriptors with unknown identifiers or unknown descriptor
tags. For descriptors with known identifiers, the receiving equipment should skip descriptors with an
unknown splice_descriptor_tag.

Splice descriptors may exist in the splice_info_section for extensions specific to the various commands.

Table 15 lists the defined Splice Descriptor Tags. Both the tag values that shall be used for Bit Stream
Format as well as the XML Element that shall be used to identify each specific Splice Descriptor are
listed.

Implementers note: Multiple descriptors of the same or different types in a single command are allowed
and may be common. One case of multiple segmentation_descriptors is described in Section 10.3.3.2. The
only limit on the number of descriptors is the section_length in Table 5, although there may be other
practical or implementation limits.

Table 15 - Splice Descriptor Tags
Tag XML Element Descriptors for Identifier “CUEI”

0x00 AvailDescriptor avail_descriptor
0x01 DTMFDescriptor DTMF_descriptor
0x02 SegmentationDescriptor segmentation_descriptor
0x03 TimeDescriptor time_descriptor
0x04 AudioDescriptor audio_descriptor
0x05 – 0xFF Reserved for future SCTE splice_descriptors

10.2. Splice descriptor

The Splice Descriptor syntax provided in this section is to be used as a template for specific
implementations of a descriptor intended for the splice_info_section. It should be noted that splice
descriptors are only used within a splice_info_section. They are not to be used within MPEG syntax, such

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 51

as the PMT, or in the syntax of any other standard. This allows one to draw on the entire range of
descriptor tags when defining new descriptors.

Table 16 - splice_descriptor()
Syntax Bits Mnemonic

splice_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 for(i=0; i<N; i++) {
 private_byte 8 uimsbf
 }
}

The XML schema base type for all Splice Descriptors is SpliceDescriptorType. The XML schema for the
SpliceDescriptorType base type is shown in Figure 14. The optional extension element is the only
element defined within the base type.

Figure 14 - SpliceDescriptorType

10.2.1. Semantic definition of fields in splice_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the body
of this descriptor. The descriptor tags are defined by the owner of the descriptor, as registered using the
identifier.

There is no entry in the XML schema for splice_descriptor_tag. The value is implicit when transforming
to or from an XML representation of the splice_descriptor() based on the specific descriptor Element
supplied. The Element names can be found in the XML Element in Table 15.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this field.
Descriptors are limited to 256 bytes, so this value is limited to 254.

There is no entry in the XML schema for descriptor_length. The value shall be derived when converting
an XML representation of the specific splice_descriptor() to Bit Stream Format.

identifier – The identifier is a 32-bit field as defined in ISO/IEC 13818-1 [MPEG Systems], section 2.6.8
and 2.6.9, for the registration_descriptor() format_identifier. Only identifier values registered and
recognized by SMPTE Registration Authority, LLC should be used (See [SMPTE RA]). Its use in this
descriptor shall scope and identify only the private information contained within this descriptor. This 32-
bit number is used to identify the owner of the descriptor. The code 0x43554549 (ASCII “CUEI”) for
descriptors defined in this specification has been registered with SMPTE.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 52

There is no entry in the XML schema for identifier.

private_byte – The remainder of the descriptor is dedicated to data fields as required by the descriptor
being defined.

There is no entry in the XML schema for private_byte.

10.3. Specific splice descriptors

10.3.1. avail_descriptor()

The avail_descriptor is an implementation of a splice_descriptor. It provides an optional extension to the
splice_insert() command that allows an authorization identifier to be sent for an avail. Multiple copies of
this descriptor may be included by using the loop mechanism provided. This identifier is intended to
replicate the functionality of the cue tone system used in analog systems for ad insertion. This descriptor
is intended only for use with a splice_insert() command, within a splice_info_section.

Table 17 - avail_descriptor()
Syntax Bits Mnemonic

avail_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 provider_avail_id 32 uimsbf
}

The XML schema for avail_descriptor() is shown in Figure 15.

Figure 15 - AvailDescriptor

10.3.1.1. Semantic definition of fields in avail_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the body
of this descriptor. The splice_descriptor_tag shall have a value of 0x00.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x00 when
transforming from an XML representation of the avail_descriptor() to Bit Stream Format.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this field.
The descriptor_length field shall have a value of 0x08.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 53

There is no entry in the XML schema for descriptor_length. The value shall be derived when converting
an XML representation of the avail_descriptor() to Bit Stream Format.

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall have a
value of 0x43554549 (ASCII “CUEI”).

There is no entry in the XML schema for identifier.

provider_avail_id – This 32-bit number provides information that a receiving device may utilize to alter
its behavior during or outside of an avail. It may be used in a manner similar to analog cue tones. An
example would be a network directing an affiliate or a head-end to black out a sporting event.

@providerAvailId [Required; xsd:unsignedInt]

10.3.2. DTMF_descriptor()

The DTMF_descriptor() is an implementation of a splice_descriptor. It provides an optional extension to
the splice_insert() command that allows a receiver device to generate a legacy analog DTMF sequence
based on a splice_info_section being received.

Table 18 - DTMF_descriptor()
Syntax Bits Mnemonic

DTMF_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 preroll 8 uimsbf
 dtmf_count 3 uimsbf
 reserved 5 bslbf
 for(i=0; i<dtmf_count; i++) {
 DTMF_char 8 uimsbf
 }
}

The XML schema for DTMF_descriptor() is shown in Figure 16.

Figure 16 - DTMFDescriptor

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 54

10.3.2.1. Semantic definition of fields in DTMF_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the body
of this descriptor. The splice_descriptor_tag shall have a value of 0x01.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x01 when
transforming from an XML representation of the DTMF_descriptor() to Bit Stream Format.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this field.

There is no entry in the XML schema for descriptor_length. The value shall be derived when converting
an XML representation of the DTMF_descriptor() to Bit Stream Format.

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall have a
value of 0x43554549 (ASCII “CUEI”).

There is no entry in the XML schema for identifier.

preroll – This 8-bit number is the time the DTMF is presented to the analog output of the device in tenths
of seconds. This gives a pre-roll range of 0 to 25.5 seconds. The splice info section shall be sent at least
two seconds earlier then this value. The minimum suggested pre-roll is 4.0 seconds.

@preroll [Optional; xsd:unsignedByte]

dtmf_count – This value of this flag is the number of DTMF characters the device is to generate.

There is no entry in the XML schema for dtmf_count. The value shall be derived when converting an
XML representation of the DTMF_descriptor() to Bit Stream Format based on the number of chars in
@chars.

DTMF_char – This is an ASCII value for the numerals ‘0’ to ‘9’, ‘*’, ‘#’. The device shall use these
values to generate a DTMF sequence to be output on an analog output. The sequence shall complete with
the last character sent being the timing mark for the pre-roll.

@chars [Optional; xsd:token]

10.3.3. segmentation_descriptor()

The segmentation_descriptor() is an implementation of a splice_descriptor(). It provides an optional
extension to the time_signal() and splice_insert() commands that allows for segmentation messages to be
sent in a time/video accurate method. This descriptor shall only be used with the time_signal(),
splice_insert() and the splice_null() commands. The time_signal() or splice_insert() message should be
sent at least once a minimum of 4 seconds in advance of the signaled splice_time() to permit the insertion
device to place the splice_info_section() accurately.

Devices that do not recognize a value in any field shall ignore the message and take no action.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 55

Table 19 - segmentation_descriptor()
Syntax Bits Mnemonic

segmentation_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 segmentation_event_id 32 uimsbf
 segmentation_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if(segmentation_event_cancel_indicator == ‘0’) {
 program_segmentation_flag 1 bslbf
 segmentation_duration_flag 1 bslbf
 delivery_not_restricted_flag 1 bslbf
 if(delivery_not_restricted_flag == ‘0’) {
 web_delivery_allowed_flag 1 bslbf
 no_regional_blackout_flag 1 bslbf
 archive_allowed_flag 1 bslbf
 device_restrictions 2 bslbf
 } else {
 reserved 5 bslbf
 }
 if(program_segmentation_flag == ‘0’) {
 component_count 8 uimsbf
 for(i=0;i<component_count;i++) {
 component_tag 8 uimsbf
 reserved 7 bslbf
 pts_offset 33 uimsbf
 }
 }
 if(segmentation_duration_flag == ‘1’)
 segmentation_duration 40 uimsbf
 segmentation_upid_type 8 uimsbf
 segmentation_upid_length 8 uimsbf
 segmentation_upid()
 segmentation_type_id 8 uimsbf
 segment_num 8 uimsbf
 segments_expected 8 uimsbf
 if(segmentation_type_id == ‘0X34’ ||
 segmentation_type_id == ‘0X36’) {
 sub_segment_num

8

uimsbf

 sub_segments_expected
 }
 }
}

8 uimsbf

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 56

The XML schema representation of the Segmentation Descriptor is specified in Figure 17.

Figure 17 - SegmentationDescriptorType

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 57

10.3.3.1. Segmentation descriptor details

Semantic definition of fields in segmentation_descriptor() as shown.

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the body
of this descriptor. The splice_descriptor_tag shall have a value of 0x02.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x02 when
transforming from an XML representation of the segmentation_descriptor() to Bit Stream Format.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this field.

There is no entry in the XML schema for descriptor_length. The value shall be derived when converting
an XML representation of the segmentation_descriptor() to Bit Stream Format.

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall have a
value of 0x43554549 (ASCII “CUEI”).

There is no entry in the XML schema for identifier.

segmentation_event_id – A 32-bit unique segmentation event identifier. Only one occurrence of a given
segmentation_event_id value shall be active at any one time. See discussion in Section Segmenting
Content - Additional semantics10.3.3.5(below).

@segmentation_event_id [Optional; xsd:unsignedInt]

segmentation_event_cancel_indicator – A 1-bit flag that, when set to ‘1’, indicates that a previously
sent segmentation event, identified by segmentation_event_id, has been cancelled. The
segmentation_type_id does not need to match between the original/cancelled segmentation event message
and the message with the segmentation_event_cancel_indicator true. Once a segmentation event is
cancelled, the segmentation_event_id may be reused for content identification or to start a new segment.

@segmentationEventCancelIndicator [Optional; xsd:Boolean] A value of TRUE shall be equivalent to a
value of ‘1’ and FALSE shall be equivalent to a value of ‘0’. If omitted, set
segmentation_event_cancel_indicator to 0 when generating a segmentation_descriptor().

program_segmentation_flag – A 1-bit flag that should be set to ‘1’ indicating that the message refers to
a Program Segmentation Point and that the mode is the Program Segmentation Mode whereby all
PIDs/components of the program are to be segmented. When set to ‘0’, this field indicates that the mode
is the Component Segmentation Mode whereby each component that is intended to be segmented will be
listed separately by the syntax that follows. The program_segmentation_flag can be set to different states
during different descriptors messages within a program.

There is no entry in the XML schema for program_segmentation_flag. The value of
program_segmentation_flag shall be set to ‘1’ when converting an XML representation of the
segmentation_descriptor() to Bit Stream Format if there are no Component Elements present in the
SegmentationDescriptor Element; otherwise, the value of program_segmentation_flag shall be set to ‘0’.

segmentation_duration_flag – A 1-bit flag that should be set to ‘1’ indicating the presence of
segmentation_duration field. The accuracy of the start time of this duration is constrained by the
splice_command_type specified. For example, if a splice_null() command is specified, the precise
position in the stream is not deterministic.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 58

There is no entry in the XML schema for segmentation_duration_flag. The value of
segmentation_duration_flag shall be set to ‘1’ when converting an XML representation of the
segmentation_descriptor() to Bit Stream Format if the segmentationDuration Attribute is specified;
otherwise, the value of segmentation_duration_flag shall be set to ‘0’.

delivery_not_restricted_flag – When this bit has a value of ‘1’, the next five bits are reserved. When this
bit has the value of ‘0’, the following additional information bits shall have the meanings defined below.
This bit and the following five bits are provided to facilitate implementations that use methods that are
out of scope of this standard to process and manage this segment.

There is no entry in the XML schema for delivery_not_restricted_flag. The value of
delivery_not_restricted_flag shall be set to ‘0’ when converting an XML representation of the
segmentation_descriptor() to Bit Stream Format if the DeliveryRestrictions Element is specified;
otherwise, the value of delivery_not_restricted_flag shall be set to ‘1’.

web_delivery_allowed_flag – This bit shall have the value of ‘1’ when there are no restrictions with
respect to web delivery of this segment. This bit shall have the value of ‘0’ to signal that restrictions
related to web delivery of this segment are asserted.

@webDeliveryAllowedFlag [Conditional Mandatory; xsd:boolean] The webDeliveryAllowedFlag shall
be specified if the DeliveryRestrictions Element is specified.

no_regional_blackout_flag – This bit shall have the value of ‘1’ when there is no regional blackout of
this segment. This bit shall have the value of ‘0’ when this segment is restricted due to regional blackout
rules.

@noRegionalBlackoutFlag [Conditional Mandatory; xsd:boolean] The noRegionalBlackoutFlag shall be
specified if the DeliveryRestrictions Element is specified.

archive_allowed_flag – This bit shall have the value of ‘1’ when there is no assertion about recording
this segment. This bit shall have the value of 0 to signal that restrictions related to recording this segment
are asserted.

@archiveAllowedFlag [Conditional Mandatory; xsd:boolean] The archiveAllowedFlag shall be specified
if the DeliveryRestrictions Element is specified.

device_restrictions – See Table 20 for the meaning of this syntax element. This field signals three pre-
defined groups of devices. The population of each group is independent and the groups are non-
hierarchical. The delivery and format of the messaging to define the devices contained in the groups is out
of the scope of this standard.

Table 20 - device_restrictions
Segmentation Message device_restrictions

Restrict Group 0 00
Restrict Group 1 01
Restrict Group 2 10
None 11

Restrict Group 0 – This segment is restricted for a class of devices defined by an out of band
message that describes which devices are excluded.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 59

Restrict Group 1 – This segment is restricted for a class of devices defined by an out of band
message that describes which devices are excluded.

Restrict Group 2 – This segment is restricted for a class of devices defined by an out of band
message that describes which devices are excluded.

None – This segment has no device restrictions.

@deviceRestrictions [Conditional Mandatory; xsd:unsignedByte] The deviceRestrictions shall be
specified if the DeliveryRestrictions Element is specified.

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary PID
stream data in the loop that follows. Components are equivalent to elementary PID streams. If
program_segmentation_flag == ‘0’ then the value of component_count shall be greater than or equal to 1.

There is no entry in the XML schema for component_count. For Component Splice Mode, the value shall
be derived when converting an XML representation of the segmentation_descriptor() to Bit Stream
Format. component_count shall be set to the count of Component Elements supplied within the
SegmentationDescriptor Element in the XML document.

component_tag – An 8-bit value that identifies the elementary PID stream containing the Segmentation
Point specified by the value of splice_time() that follows. The value shall be the same as the value used in
the stream_identifier_descriptor() to identify that elementary PID stream. The presence of this field from
the component loop denotes the presence of this component of the asset.

@componentTag [Required, xsd:unsignedByte]

pts_offset – A 33-bit unsigned integer that shall be used by a splicing device as an offset to be added to
the pts_time, as modified by pts_adjustment, in the time_signal() message to obtain the intended splice
time(s). When this field has a zero value, then the pts_time field(s) shall be used without an offset. If
splice_time() time_specified_flag = 0 or if the command this descriptor is carried with does not have a
splice_time() field, this field shall be used to offset the derived immediate splice time.

@ptsOffset [Required, PTSType] See Section 13.2.

segmentation_duration – A 40-bit unsigned integer that specifies the duration of the segment in terms of
ticks of the program’s 90 kHz clock. It may be used to give the splicer an indication of when the segment
will be over and when the next segmentation message will occur. Shall be 0 for end messages.

@segmentationDuration [Optional; xsd:unsignedLong]

segmentation_upid_type – A value from the following table. There are multiple types allowed to ensure
that programmers will be able to use an id that their systems support. It is expected that the consumers of
these ids will have an out-of-band method of collecting other data related to these numbers and therefore
they do not need to be of identical types. These ids may be in other descriptors in the program and, where
the same identifier is used (ISAN for example), it shall match between programs.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 60

Table 21 - segmentation_upid_type
segmentation_

upid_type

segmentati
on_upid_le

ngth
 (Bytes)

segmentation
_upid()
(Name)

Description Example Textual
Representation

0x00 0 Not Used The segmentation_upid is not
defined and is not present in the
descriptor.

0x01 variable User
Defined

Deprecated: use type 0x0C; The
segmentation_upid does not
follow a standard naming scheme.

User Defined

0x02 8 ISCI Deprecated: use type 0x03, 8
characters; 4 alpha characters
followed by 4 numbers.

ABCD1234

0x03 12 Ad-ID Defined by the Advertising Digital
Identification, LLC group. 12
characters; 4 alpha characters
(company identification prefix)
followed by 8 alphanumeric
characters. (See [Ad-ID])

ABCD0001000H
[SMPTE 2092-1]

0x04 32 UMID See [SMPTE 330] 060A2B34.010101
05.01010D20.1300
0000.D2C9036C.8
F195343.AB7014
D2.D718BFDA

0x05 8 ISAN Deprecated: use type 0x06, ISO
15706 binary encoding.

n/a

0x06 12 ISAN Formerly known as V-ISAN. ISO
15706-2 binary encoding
(“versioned” ISAN). See [ISO
15706-2].

0000-0001-2C52-
0000-P-0000-
0000-0

0x07 12 TID Tribune Media Systems Program
identifier. 12 characters; 2 alpha
characters followed by 10
numbers.

MV0004146400

0x08 8 TI AiringID (Formerly Turner ID),
used to indicate a specific airing
of a program that is unique within
a network.

0x0A42235B81BC
70FC
(expressed as
hexadecimal)

0x09 variable ADI CableLabs metadata identifier as
defined in Section 10.3.3.2.

provider.com/MO
VE123456789012
3456

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 61

segmentation_
upid_type

segmentati
on_upid_le

ngth
 (Bytes)

segmentation
_upid()
(Name)

Description Example Textual
Representation

0x0A 12 EIDR An EIDR (see [EIDR])
represented in Compact Binary
encoding as defined in Section
2.1.1 in EIDR ID Format (see
[EIDR ID FORMAT])

Content:
10.5240/0E4F-
892E-442F-6BD4-
15B0-1
Video Service:
10.5239/C370-
DCA5
[SMPTE 2079]

0x0B variable ATSC
Content
Identifier

ATSC_content_identifier()
structure as defined in [ATSC
A/57B].

Not Defined

0x0C variable MPU() Managed Private UPID structure
as defined in section 10.3.3.3.

User Defined

0x0D variable MID() Multiple UPID types structure as
defined in section 10.3.3.4.

See referenced
UPID types

0x0E variable ADS
Information

Advertising information. The
specific usage is out of scope of
this standard.

User Defined

0x0F variable URI Universal Resource Identifier (see
[RFC 3986]).

urn:uuid:f81d4fae-
7dec-11d0-a765-
00a0c91e6bf6

0x10-0xFF variable Reserved Reserved for future
standardization.

segmentation_upid_length – Length in bytes of segmentation_upid() as indicated by Table 21. If there is
no segmentation_upid() present, segmentation_upid_length shall be set to zero.

There is no entry in the XML schema for segmentation_upid_length. The value shall be derived when
converting an XML representation of the SegmentationUpid to Bit Stream Format. In the case of UPID
type MID(), this reflects the total length of nested UPID types structure. See Section 10.3.3.4. If there are
no SegmentationUpid elements in an XML representation, segmentation_upid_length shall be set to zero
in the Bit Stream Format.

segmentation_upid() – Length and identification from Table 21 - segmentation_upid_type. This
structure’s contents and length are determined by the segmentation_upid_type and
segmentation_upid_length fields. An example would be a type of 0x06 for ISAN and a length of 12 bytes.
This field would then contain the ISAN identifier for the content to which this descriptor refers.

SegmentationUpid [Optional, xsd:SegmenationUpidType] Zero, one or more SegmentationUpid
Elements may be specified. If multiple SegmentationUpid Elements are present in an XML
representation, the MID() structure shall be generated per Section 10.3.3.4. See Section 10.3.3.10 for
additional details on SegmentationUpidType.

segmentation_type_id – The 8-bit value shall contain one of the values in Table 22 to designate type of
segmentation. All unused values are reserved. When the segmentation_type_id is 0x01 (Content
Identification), the value of segmentation_upid_type shall be non-zero. If segmentation_upid_length is
zero, then segmentation_type_id shall be set to 0x00 for Not Indicated.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 62

Table 22 - segmentation_type_id
Segmentation
Message Segmentation_type_id segment_num segments_expected sub_segment_num sub_segments_expected

 Hex (Decimal)

Not Indicated 0x00 (00) 0 0 Not used Not Used

Content
Identification 0x01 (01) 0 0 Not used Not Used

Program Start 0x10 (16) 1 1 Not used Not Used

Program End 0x11 (17) 1 1 Not used Not Used

Program Early
Termination 0x12 (18) 1 1 Not used Not Used

Program
Breakaway 0x13 (19) 1 1 Not used Not Used

Program
Resumption 0x14 (20) 1 1 Not used Not Used

Program
Runover
Planned

0x15 (21) 1 1 Not used Not Used

Program
Runover
Unplanned

0x16 (22) 1 1 Not used Not Used

Program
Overlap Start 0x17 (23) 1 1 Not used Not Used

Program
Blackout
Override

0x18 (24) 0 0 Not used Not Used

Program Start
– In Progress 0x19 (25) 1 1 Not used Not used

Chapter Start 0x20 (32) Non-zero Non-zero Not used Not Used

Chapter End 0x21 (33) Non-zero Non-zero Not used Not Used

Break Start 0x22 (34) 0 or Non-zero 0 or Non-zero Not used Not used

Break End 0x23 (35) 0 or Non-zero 0 or Non-zero Not used Not used

Opening
Credit Start 0x24 (36) 1 1 Not used Not used

Opening
Credit End 0x25 (37) 1 1 Not used Not used

Closing Credit
Start 0x26 (38) 1 1 Not used Not used

Closing Credit
End 0x27 (39) 1 1 Not used Not used

Provider
Advertisement
Start

0x30 (48) 0 or Non-zero 0 or Non-zero Not used Not Used

Provider
Advertisement
End

0x31 (49) 0 or Non-zero 0 or Non-zero Not used Not Used

Distributor
Advertisement
Start

0x32 (50) 0 or Non-zero 0 or Non-zero Not used Not Used

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 63

Segmentation
Message Segmentation_type_id segment_num segments_expected sub_segment_num sub_segments_expected

Distributor
Advertisement
End

0x33 (51) 0 or Non-zero 0 or Non-zero Not used Not Used

Provider
Placement
Opportunity
Start

0x34 (52) 0 or Non-zero 0 or Non-zero 0 or Non-zero 0 or Non-zero

Provider
Placement
Opportunity
End

0x35 (53) 0 or Non-zero 0 or Non-zero Not used Not Used

Distributor
Placement
Opportunity
Start

0x36 (54) 0 or Non-zero 0 or Non-zero 0 or Non-zero 0 or Non-zero

Distributor
Placement
Opportunity
End

0x37 (55) 0 or Non-zero 0 or Non-zero Not used Not Used

Provider
Overlay
Placement
Opportunity
Start

0x38 (56) 0 or Non-zero 0 or Non-zero 0 or Non-zero 0 or Non-zero

Provider
Overlay
Placement
Opportunity
End

0x39 (57) 0 or Non-zero 0 or Non-zero Not used Not Used

Distributor
Overlay
Placement
Opportunity
Start

0x3A (58) 0 or Non-zero 0 or Non-zero 0 or Non-zero 0 or Non-zero

Distributor
Overlay
Placement
Opportunity
End

0x3B (59) 0 or Non-zero 0 or Non-zero Not used Not Used

Unscheduled
Event Start 0x40 (64) 0 0 Not used Not Used

Unscheduled
Event End 0x41 (65) 0 0 Not used Not Used

Network Start 0x50 (80) 0 0 Not used Not Used

Network End 0x51 (81) 0 0 Not used Not Used

Notes:

1. Only one Program Overlap Start is allowed to be active at a time. A Program End shall occur
before a subsequent Program Overlap Start can occur.

2. See [SCTE 223] for further usage of segmentation_type_id.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 64

segment_num – This field provides support for numbering segments within a given collection of
segments (such as chapters, advertisements or placement opportunities). This value, when utilized, is
expected to reset to one at the beginning of a collection of segments. This field is expected to increment
for each new segment (such as a chapter). The value of this field shall be as indicated in Table 22.

@segmentNum [Optional, xsd:unsignedByte]

segments_expected – This field provides a count of the expected number of individual segments (such as
chapters) within a collection of segments. The value of this field shall be as indicated in Table 22.

@segmentsExpected [Optional, xsd:unsignedByte]

sub_segment_num – If specified, this field provides identification for a specific sub-segment within a
collection of sub-segments. This value, when utilized, is expected to be set to one for the first sub-
segment within a collection of sub-segments. This field is expected to increment by one for each new sub-
segment within a given collection. If present, descriptor_length shall include sub_segment_num in the
byte count and serve as an indication to an implementation that sub_segment_num is present in the
descriptor.

The value of this field shall be as indicated in Table 22. Any other usage of sub_segment_num beyond
that defined in Table 22 is out of scope of this standard.

If sub_segment_num is provided, sub_segments_expected shall be provided.

@subSegmentNum [Optional, xsd:unsignedByte]

sub_segments_expected – If specified, this field provides a count of the expected number of individual
sub-segments within the collection of sub-segments. If present, descriptor_length shall include
sub_segments_expected in the byte count and serve as an indication to an implementation that
sub_segments_expected is present in the descriptor.

The value of this field shall be as indicated in Table 22. Any other usage of sub_segments_expected
beyond that defined in Table 22 is out of scope of this standard.

@subSegmentsExpected [Optional, xsd:unsignedByte]

10.3.3.2. Cablelabs metadata identifier

When the value of segmentation_upid_type is 0x09 (ADI), it shall have the abbreviated syntax of
<element> : <identifier>. The variable <element> shall take only the values “PREVIEW”, “MPEG2HD”,
“MPEG2SD”, “AVCHD”, “AVCSD”, “HEVCSD”, “HEVCHD”, “SIGNAL”, “PO”
(PlacementOpportunity), “BLACKOUT” and “OTHER”.

For Cablelabs metadata 1.1 the variable <identifier> shall take the form <providerID>/<assetID>, the
variables <providerID> and <assetID> shall be as specified in [CLADI1-1] Sections 5.3.1 for Movie or
5.5.1 for Preview represented as 7-bit printable ASCII characters (values ranging from 0x20 (space) to
0x7E (tilde)).

SCTE 2362 provides compatibility with this identifier model as described in [SCTE 236] Section 7.11.1.
For SCTE 236 the variable <identifier> shall be a URI conforming to [RFC 3986].

2 Formerly CableLabs Content 3.0

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 65

Any specifics on the systems that will ingest and process this information are out of scope of this
standard.

10.3.3.3. MPU() definition and semantics

Table 23 – MPU()
Syntax Bits Mnemonic

MPU() {
 format_identifier 32 uimsbf
 private_data N*8 uimsbf
}

format_identifier – A 32-bit unique identifier as defined in ISO/IEC 13818-1 and registered with the
SMPTE Registration Authority (See [SMPTE RA]).

private_data – A variable length, byte-aligned, set of data as defined by the registered owner of the
format_identifier field value. The length is defined by the segmentation_upid_length, which includes the
format_identifier field length.

10.3.3.4. MID() definition and semantics

Table 24 – MID()
Syntax Bits Mnemonic

MID() {
 for (i=0; i<N; i++) {

 segmentation_upid_type 8 uimsbf
 length 8 uimsbf
 segmentation_upid N*8 uimsbf
 }
}

segmentation_upid_type – As defined above.

length – segmentation_upid_length for the following segmentation_upid.

segmentation_upid – segmentation_upid according to segmentation_upid_type as defined in
Table 21.

Note: The number of segmentation_upid’s present (“N”) is not explicitly signaled. It is
discovered by repeatedly parsing the fields above until segmentation_upid_length is exhausted.

There is no structure in the XML schema for MID(). When converting an XML document to Bit Stream
Format, the presence of two or more SegmentationUpid Elements shall result in a MID() structure being
inserted into the bit stream.

10.3.3.5. Segmenting Content - Additional semantics

One use of this descriptor is to signal content Segments. Segments are expected to have a logical
hierarchy consisting of programs (highest level), chapters, placement opportunities, and advertisements
(refer to Table 22). Provider and Distributor advertisements share the lowest logical level and should not
overlap.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 66

For the purposes of defining the semantics stated in this document section, the following definition
applies:

Segment – shall be one of the segmentation_type_id values from Table 22, listed below. Occurrences of
the segmentation_descriptor() that support Segments typically occur in pairs. The valid pairings are:

- Program Start/End – Program End can be overridden by Program Early Termination
- Program Overlap Start/Program End
- Program Start – In Progress/ Program End – Program End can be overridden by Program Early

Termination
- Program Breakaway/Resumption
- Chapter Start/End
- Break Start/End
- Opening Credit Start/End
- Closing Credit Start/End
- Provider Advertisement Start/End
- Distributor Advertisement Start/End
- Provider Placement Opportunity Start/End
- Distributor Placement Opportunity Start/End
- Provider Overlay Placement Opportunity Start/End
- Distributor Overlay Placement Opportunity Start/End
- Unscheduled Event Start/End
- Network Start/End

The following segmentation_types (from Table 22) also support Segments but are not paired:

- Program Runover Planned
- Program Runover Unplanned

The following segmentation_types (from Table 22) are outside of the scope of this document section.
They are not considered to support Segments (Segmenting Content):

- Not Indicated
- Content Identification

Descriptors should normally be paired, once for a given Segment start and then for Segment end. Each
Segment end usage may be followed by another Segment start of the same logical level Segment. Refer to
Section 10.3.3.6 (Programs), Section 10.3.3.7 (Chapters) and Section 10.3.3.11 (Placement Opportunities)
for additional semantics. When a Segment’s duration is provided, and that duration expires without a
Segment end being signaled, then the value of segmentation_event_id may be reused if appropriate. Such
inferred Segment end cases are not to be encouraged and should not be used.

In order to associate different types of segmentation constructs (such as associating Program level
constructs with Chapter level constructs) the same segmentation_upid() may be used in the associated
constructs. This however is not required.

The semantics of the fields within the segmentation_descriptor() for segmenting content are as follows
(subject to additional constraints in other sections):

segmentation_event_id – When a Segment start is signaled, the segmentation_event_id value becomes
active. While active, this value shall not be used to identify other segmentation events. When a Segment
end is signaled, the segmentation_event_id value shall match the segment start segmentation_event_id

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 67

value and this value then becomes inactive and hence able to be used again for a new
segmentation_descriptor() occurrence including non-Segment usage such as Content Identification.

program_segmentation_flag – shall be set to ‘1’.

segmentation_duration_flag – If set to ‘1’, a valid segmentation_duration shall be included in the
descriptor. If segmentation_type_id is set to 0x10 (Program Start) then this flag may be set to ‘0’.

segment_num – Shall be set to non-zero values for Chapters ranging from one to the value of
segments_expected on the Chapter Start. For Program segments, this value shall be set to one on the
Program Start or Program Start – In Progress. This field may be optionally utilized for Advertisements in
the same manner as Chapters.

segments_expected – Shall be set to a non-zero value on Chapter Start, Provider Advertisement Start, or
Distributor Advertisement Start providing the number of starts in the program. For Program segments,
this value shall be set to one.

sub_segment_num and sub_segments_expected shall only be specified on Placement Opportunity Start
segments. See Section 10.3.3.11 for constraints specific to Placement Opportunity Start.

10.3.3.6. Programs - Additional semantics

When signaled, a Program shall begin with a segmentation_descriptor() containing a
segmentation_type_id value of 0x10 (Program Start). The Program shall utilize a single and unique value
for segmentation_event_id in all descriptors that pertain to this Program. The usage of a
segmentation_upid() is optional but, if used, its value shall be uniquely assigned to this Program and not
shared by Programs that are embedded within this Program. A Program shall end with a
segmentation_descriptor() containing a segmentation_type_id value of 0x11 (Program End) or 0x12
(Program Early Termination).

The following segmentation messages shall only occur between the Program Start and Program End or
Program Early Termination: Program Breakaway (segmentation_type_id value of 0x13); Program
Resumption (segmentation_type_id value of 0x14); Program Runover Planned (segmentation_type_id
value of 0x15); or Program Runover Unplanned (segmentation_type_id value of 0x16). A Program
Resumption shall be preceeded by a Program Breakaway. A program may be ended while in a Program
Breakaway state.

Following a Program Breakaway, another Program Start to Program End sequence may occur, with new
values of segmentation_event_id and segmentation_upid(). An entire embedded Program or Segments of
an embedded Program shall be situated only between a Program Breakaway and a Program Resumption.
Multiple instances of embedded Programs may occur. Note: Program Runover messages are
asynchronous notifications and may occur at any time between the start and end of the program including
within another embedded active program.

A Program Blackout Override (segmentation_type_id value of 0x18) may be sent between a Program
Start or Program Start – In Progress and Program End or Program Early Termination. When a Program
Blackout Override is received, the Delivery Restrictions from the Program Blackout Override message
may be applied to the referenced Program (see section 10.3.3.9 “Delivery Restrictions – Additional
Semantics”).

If provided, the segmentation_duration shall be considered from the splice_time() of the time_signal
command, if time is present, otherwise from the time the message is received. The duration clock

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 68

continues to increment during Program Breakaways. segmentation_duration can be extended using a
Runover Planned or Runover Unplanned message. The value supplied in the new message is an update to
the overall duration of the program and represents the elapsed time from the effective moment of the new
message to the end of the segment. It is not an addition of elapsed time. If segmentation_duration is
specified, when the duration is exceeded the program shall be considered terminated.

If at Program Start a duration is not provided, a duration may be provided at a later time using a Program
Runover Planned or Program Runover Unplanned message.

If a duration is in effect, either set at Program Start or later introduced, segmentation_duration may be set
to zero by sending a Program Runover Planned or Program Runover Unplanned message with
segmentation_duration_flag set to ‘0’.

A Content Identification (value of segmentation_type_id 0x01) message with a value of
segmentation_upid() matching the currently active Program may be sent on a periodic basis to make an
implementation more robust. If sent, it shall match the values of segmentation_event_id and
segmentation_upid() used in the Program related messages.

This does not restrict Content Identification messages being sent that do not match the
segmentation_event_id and segmentation_upid() used in the Program related messages. Other Content
Identification messages can be inserted for other purposes.

10.3.3.7. Chapters - Additional semantics

A chapter Segment shall be introduced by a Chapter Start and ended by a Chapter End. For Chapter End,
the value of segmentation_event_id shall match the value of segmentation_event_id for Chapter Start. If
present, the segmentation_upid() shall be the same in both occurrences of a segmentation_descriptor()
pair.

Chapter Segments may be associated with Program Segments using the same segmentation_upid() on
both Chapter and Program messages.

Chapters may overlap. Chapters can be numbered using segment_num. The value of segments_expected
on the Chapter Start shall indicate the expected number of chapters. Use of non-zero values for
segmentation_duration on Chapter Start is optional.

10.3.3.8. Break – Additional semantics

Break numbering via Break Starts shall be supported per the following. The numbering of Breaks via
Break Start messages are dependent on what is sent by a Provider in the Transport Stream:

a) Program Segmentation descriptors are present in the Transport Stream and Break numbering
within a Program is not supported.

b) Program Segmentation descriptors are present in the Transport Stream and Break numbering
within a Program is supported.

c) Program Segmentation descriptors are not present in the Transport Stream and Break numbering
within a Program is not supported.

d) Program Segmentation descriptors are not present in the Transport Stream and Break numbering
within a Program is supported.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 69

If Program Segmentation descriptors (See Section 10.3.3.6) are present in the Transport Stream and Break
numbering within a Program is not supported, Break Starts within the Program shall comply with the
following:

- segments_expected in all Break Starts shall be set to 0 (zero).
- segment_num in all Break Starts shall be set to 0 (zero).

If Program Segmentation descriptors (See Section 10.3.3.6) are present in the Transport Stream and Break
numbering within a Program is supported, Break Starts shall comply with the following:

- segments_expected in all Break Starts in a collection of Breaks within a Program shall be set to
the expected number of Breaks within the Program.

- segment_num on the first Break Start shall be set to 1 (one) for the first Break and incremented
by 1 for each subsequent Break within the Program.

10.3.3.9. Delivery Restrictions – Additional semantics

Delivery restrictions on the following segmentation types shall be applied in the absence of out of band
data as described later in this section.

- Program Start
- Program Resumption
- Program Runover Planned
- Program Runover Unplanned
- Program Overlap Start
- Program Blackout Override
- Program Start – In Progress
- Chapter Start
- Break Start
- Provider Advertisement Start
- Distributor Advertisement Start
- Provider Placement Opportunity Start
- Distributor Placement Opportunity Start
- Unscheduled Event Start
- Network Start

Delivery restrictions in end messages shall be ignored.

For Programs, a Program Blackout Override shall be used to provide new values for the delivery
restrictions for the associated Program Start, Program Start – In Progress or Program Overlap Start
message. See Section 10.3.3.6 for additional information.

For Programs, a Program Resumption may include new values for the delivery restrictions for the
associated Program Start, Program Start – In Progress, or Program Overlap Start message.

The delivery restrictions from the most recent message shall be applied.

In addition to delivery restrictions in the SCTE 35 message, out of band data may be supplied (see [SCTE
224]). If there is matching out of band data, the matching out of band data that applies to the given
program, advertising or unscheduled event should supersede the delivery flags and device restrictions
from the SCTE 35 message.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 70

10.3.3.10. Content Identifiers – Additional semantics

The following constraints shall be applied when including content identifiers in Segmentation
Descriptors.

Programs should be identified using both video service and tv/movie EIDRs [EIDRA]
(segmentation_upid_type=0x0A).

As an alternative to EIDR, an airing identifier that is globally unique to a given video service may be
supplied (segmentation_upid_type=0x08). If known, the video service and tv/movie EIDRs [EIDR]
should be supplied via some out of band mechanism. Alternate identifiers in an [SCTE 224] message is a
mechanism that may be leveraged.

Advertisements should be identified using Distributor Advertisement Start or Provider Advertisement
Start. The identifier should be an Ad-ID [Ad-ID] (segmentation_upid_type=0x03).

10.3.3.11. Placement Opportunities – Additional semantics

The additional semantics and constraints in this section shall apply to Placement Opportunity paired
messages listed in Table 22 namely, Provider Placement Opportunity, Distributor Placement Opportunity,
Provider Overlay Placement Opportunity and Distributor Overlay Placement Opportunity.

A Placement Opportunity shall be introduced by a corresponding Start message (for example, Provider
Placement Opportunity Start) and closed by an associated End message (for example, Provider Placement
Opportunity End). In the scenario where one Placement Opportunity is followed by another, the
Placement Opportunity End segmentation message from one and Placement Opportunity Start
segmentation in the next may reference the same PTS.

The Placement Opportunity Start segmentation types and associated Placement Opportunity End
segmentation types shall have the same segmentation_event_id. See section 10.3.3.5 for additional
constraints on segmentation_event_id.

Placement Opportunity Identifiers

Each Placement Opportunity Start and Placement Opportunity End shall be uniquely identifiable by one
of two methods:

Method one utilizes a unique signal identifier. For this method the following shall be utilized:

- segmentation_upid_type set to 0x09
- segmentation_upid set to “SIGNAL:<Base64 encoded GUID>”

Method two utilizes a unique airing id and break position. For this method the following shall be utilized:

- segmentation_upid_type set to 0x08
- segmentation_upid set to a unique airing identifier
- The Distributor system infers the break position within the program based on order of receipt.

With either of the above two methods, the Placement Opportunity Start and End may also include an
additional unique identity for a Placement Opportunity. In this case, the following shall be utilized:

- segmentation_upid_type set to 0x09
- segmentation_upid set to “PO:<Base64 encoded GUID>”

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 71

If Placement Opportunity identifiers are present, associated Placement Opportunity Start and End shall
carry the same Placement Opportunity identifiers. A given Placement Opportunity identifier shall appear
in one Placement Opportunity Start and one Placement Opportunity End.

See [RFC 4648] for additional information on base-64 encoding. See Section 10.3.3.2 for additional
information.

Placement Opportunity Break Numbering

Break numbering via Placement Opportunity Starts shall be supported per the following. The numbering
of Breaks via Placement Opportunity Start messages are dependent on what is sent by a Provider in the
Transport Stream sent to a Distributor:

a) Program Segmentation descriptors are present in the Transport Stream and Break numbering
within a Program is not supported.

b) Program Segmentation descriptors are present in the Transport Stream and Break numbering
within a Program is supported.

c) Program Segmentation descriptors are not present in the Transport Stream and Break numbering
within a Program is not supported.

d) Program Segmentation descriptors are not present in the Transport Stream and Break numbering
within a Program is supported.

If Program Segmentation descriptors (See Section 10.3.3.6) are present in the Transport Stream and Break
numbering within a Program is not supported, Placement Opportunity Starts within the Program shall
comply with the following:

- segments_expected in all Placement Opportunity Starts shall be set to 0 (zero).
- segment_num in all Placement Opportunity Starts shall be set to 0 (zero).

If Program Segmentation descriptors (See Section 10.3.3.6) are present in the Transport Stream and Break
numbering within a Program is supported, Placement Opportunity Starts shall comply with the following:

- segments_expected in all Placement Opportunity Starts in a collection of Placement
Opportunities within a Program shall be set to the expected number of Breaks within the
Program.

- segment_num on the first Placement Opportunity Start shall be set to 1 (one) for the first Break
and incremented by 1 for each subsequent Break within the Program.

If Program Segmentation descriptors are not present in the Transport Stream and Break numbering within
a Program is not supported, all Placement Opportunity Starts shall comply with the following:

- segments_expected shall be set to 0 (zero)
- segment_num shall be set to 0 (zero).

If Program segmentation descriptors are not present in the Transport Stream and Break numbering is
supported, Placement Opportunity Starts shall comply with the following:

- segments_expected in all Placement Opportunity Starts in a group of Placement Opportunities
shall be set to the expected number of Breaks in the next group of Breaks.

- segment_num on the first Placement Opportunity Start shall be set to 1 (one) for the first Break
and incremented by 1 for each subsequent Break within the group of Breaks.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 72

If the number of Breaks within the group of Breaks changes, increase or decrease, within the group,
segments_expected on the next Placement Opportunity Start shall be updated with the new
segments_expected. If number of Breaks within the group of Breaks is reduced after the last set of
Placement Opportunity Starts are sent for a Break, the distributor implementation should recognize that
no additional Breaks will be signaled when the next Placement Opportunity Start with segment_num
equal to 1 is received. Since there are no Program related segmentation descriptors, the implementation
should recognize when segment_num is reset to one to indicate when a new group of Breaks is started.

A Break may have one or more Placement Opportunities. All Placement Opportunity Starts in a given
break shall have the same values for segment_num and segments_expected. If the number of Breaks
changes, increase or decrease, within the Program, segments_expected on the next Placement Opportunity
Start shall be updated with the new segments_expected. If the number of Breaks is reduced after the last
set of Placement Opportunity Starts are sent for a Break, the distributor implementation should recognize
that no additional Breaks exist for a Program when the Program End message is received. A Placement
Opportunity shall have one or more Placement Opportunity Ends. A Placement Opportunity may contain
one or more nested Placement Opportunities. The Placement Opportunity Start and associated Placement
Opportunity Ends for a contained Placement Opportunity shall be within the Placement Opportunity Start
and first Placement Opportunity End of the containing Placement Opportunity.

The numbering of Placement Opportunities within a Break is dependent on whether:

a) Placement Opportunity numbering within a Break is not supported
b) Placement Opportunity numbering within a Break is supported

If Placement Opportunities within a Break are not numbered the Placement Opportunity Start shall
comply with one of the following:

- sub_segment_num and sub_segments_expected may be omitted

OR

- sub_segments_expected shall be set to 0 (zero)
- sub_segment_num on all Placement Opportunity Starts shall be set to 0 (zero)
- both sub_segment_num and sub_segments shall be present in the segmentation descriptor and

included in the overall byte count for the segmentation descriptor

If Placement Opportunities within a Break are numbered and contains only one opportunity the Placement
Opportunity Start should comply with the following:

- sub_segments_expected shall be set to 1 (one)
- sub_segment_num on the first Placement Opportunity Start shall be set to 1 (one)

If the number of Placement Opportunities within a Break increases from 1 (one) after the first Placement
Opportunity Start for the break is sent, sub_segments_expected on the next Placement Opportunity Start
shall be updated with the new segments_expected.

If Placement Opportunities within a Break are numbered and there are multiple Placement Opportunity
Starts within a break, the Placement Opportunity Starts shall comply with the following:

- sub_segments_expected shall be set to the expected number of Placement Opportunity Start
messages expected within the break.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 73

- sub_segment_num on the first Placement Opportunity Start shall be set to 1 (one) and
incremented by one on each subsequent Placement Opportunity Start.

If the number of Placement Opportunities change, increase or decrease, within the Break,
sub_segments_expected on the next Placement Opportunity Start shall be updated with the new
sub_segments_expected. If the number of Placement Opportunities is reduced after the last Placement
Opportunity Start is sent for a Break, the distributor implementation should recognize that no additional
Breaks will be signaled when the next Placement Opportunity Start with sub_segment_num equal to 1
(one) is received.

Multiple Placement Opportunity End Messages

Additional Placement Opportunity End segmentation types that have the same segmentation_event_id as
the Placement Opportunity Start may be present. To inform downstream systems of the number of
Placement Opportunity End segmentation types to be expected in the PID stream associated with a given
Placement Opportunity Start, the segmentation descriptor shall comply with the following:

- segmentation_duration on the Placement Opportunity Start shall be the duration defined by the
last Placement Opportunity End.

- segmentation_event_id shall have the same value on all Placement Opportunity End
segmentation types as the associated Placement Opportunity Start.

- segments_expected on all Placement Opportunity End segmentation types shall be set to the
number of Placement Opportunity End segmentation types to be sent.

- segment_num on the first Placement Opportunity End shall be set to 1 (one) and incremented by
one on each subsequent Placement Opportunity End.

- segmentation_upid on the Placement Opportunity Start or Placement Opportunity End may
include one Placement Opportunity identifier or, if more than one Placement Opportunity
identifier, Placement Opportunity identifiers in a MID() structure.

If the number of Placement Opportunity Ends change, increase or decrease, within the Placement
Opportunity, sub_segments_expected on the next Placement Opportunity End shall be updated with the
new sub_segments_expected. If the number of Placement Opportunity Ends is reduced after the last
Placement Opportunity End is sent for a Placement Opportunity, the distributor implementation should
recognize that no additional Placement Opportunity Ends will be signaled when the next Placement
Opportunity message with a new segmentation_event_id is received.

The segmentation_duration on the Placement Opportunity Start shall be the duration of the underlying
content for the Break. If multiple Placement Opportunity End segmentation types are associated with a
Placement Opportunity Start, the segmentation_duration in the Placement Opportunity Start should be the
duration defined by the last Placement Opportunity End sharing the same segmentation_event_id. If a
Placement Opportunity End with a sub_segment_num equal to expected Placement Opportunity Ends is
received prior to reaching the duration in the Placement Opportunity Start, the Placement Opportunity
shall be considered closed.

In those cases where a Provider chooses to provide supplemental information to a Distributor, the
information may be passed in a segmentation_upid using a segmentation_upid_type of ADS Information
(0x0E). An out of band mechanism may also be leveraged to provide supplemental information about a
Placement Opportunity (See [SCTE 224]).

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 74

10.3.4. time_descriptor()

The time_descriptor is an implementation of a splice_descriptor. It provides an optional extension to the
splice_insert(), splice_null() and time_signal() commands that allows a programmer’s wall clock time to
be sent to a client. For the highest accuracy, this descriptor should be used with a time_signal() or
splice_insert() command that has the time_specified_flag equal to 1. This command may be inserted using
SCTE 104 or by out of band provisioning on the device inserting this message.

The repetition rate of this descriptor should be at least once every 5 seconds. When it is the only
descriptor present in the time_signal() or splice_null() command, then the encoder should not insert a key
frame.

This command may be used to synchronize time based external metadata with video and the party
responsible for the metadata and the time value used should insure that they are properly synchronized
and have the desired level of accuracy required for their application.

10.3.4.1. Informative description of TAI

The time_descriptor() uses the time format defined for the Precision Time Protocol [PTP]. [PTP] is based
upon an international time scale called International Atomic Time (TAI), unlike NTP [RFC5905] which is
based upon UTC. [PTP] is being used in a/v bridging and broadcast synchronization protocols and likely
to be available in a studio environment. Other time sources, such as NTP or GPS, are readily convertible
to PTP format.

TAI does not have "leap" seconds like UTC. When UTC was introduced (January 1, 1972) it was
determined there should be a difference of 10 seconds between the two time scales. Since then an
additional 27 leap seconds (including one in December 2016) have been added to UTC to put the current
difference between the two timescales at 37 seconds (as of June 2018) The [PTP] protocol communicates
the current offset between TAI and UTC to enable conversion. By default [PTP] uses the same "epoch"
(i.e. origination or reference start time and date of the timescale) as Unix time, of 00:00, January 1, 1970.
Readers are advised to consult IERS Bulletin C for the current value of leap seconds
[https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html].

Table 25 - time_descriptor()
Syntax Bits Mnemonic

time_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 TAI_seconds 48 uimsbf
 TAI_ns 32 uimsbf
 UTC_offset 16 uimsbf
}

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.iers.org_IERS_EN_Publications_Bulletins_bulletins.html&d=DwMFaQ&c=W8uiIUydLnv14aAum3Oieg&r=lieHL3gPBtx3QYycTqidVe5F_At7L1vvYevDrYRkZQk&m=95Fl8H9z9PURXfGYVOrqLNdz7C11PEr959Kf1P0sghQ&s=DoJTt-SAh_BlzXcY0iTZcvPK4jAP4KanO9ubajqMfyo&e=

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 75

The XML schema for the time_descriptor() is shown in Figure 18.

Figure 18 - TimeDescriptor

10.3.4.2. Semantic definition of fields in time_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the body
of this descriptor. The splice_descriptor_tag shall have a value of 0x03.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x03 when
transforming from an XML representation of the time_descriptor() to Bit Stream Format.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this field.
The descriptor_length field shall have a value of 0x10.

There is no entry in the XML schema for descriptor_length. The value shall be derived when converting
an XML representation of the time_descriptor() to Bit Stream Format.

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall have a
value of 0x43554549 (ASCII “CUEI”).

There is no entry in the XML schema for identifier.

TAI_seconds – This 48-bit number is the TAI seconds value.

@taiSeconds [Optional; xsd:unsignedLong with a restriction up to 48 bits (281474976710656).

TAI_ns – This 32-bit number is the TAI nanoseconds value.

@taiNs [Optional; xsd:unsignedInt]

UTC_offset – This 16-bit number shall be used in the conversion from TAI time to UTC or NTP time per
the following equations.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 76

UTC seconds = TAI seconds - UTC_offset

NTP seconds = TAI seconds - UTC_offset + 2,208,988,800

@utcOffset [Optional; xsd:unsignedShort]

10.3.4.1. Synchronized Client Clock

The time_descriptor() provides a mechanism to associate a programmer’s wall clock time with a
presentation time in the media timeline as specified by the PTS carried in the splice_time structure of the
command. The time_descriptor() may be used by a downstream device, such as a packager or set-top, to
determine the offset to its local time-of-day clock with the incoming stream.

Figure 19 illustrates how the time-of-day SMPTE time code associated with a frame would be converted
to TAI and associated with a presentation time stamp (PTS) value. The receiving equipment could then
know the studio/origination time of any frame in the system by knowing the PTS to TAI offset. So, if the
system inserts a time_descriptor every 5 seconds randomly and it happens to insert one on the second
frame in the figure, a relationship is established with the PTS time of 711500 to a TAI of 14:12:38.0166.
Now if a packager wants to insert an ID3 tag or cause a segment break and wants to name a file on the
08:12:01:21 SMPTE frame, it can take the current PTS of 740000 and subtract the 711500 value to get a
28500 difference in 90 kHz clock ticks and know that the wall clock time that has significance to the
programmer was at 14:12:38.333 TAI.

Figure 19 – Time Relationships

If stream processing results in a change in the time base, the splice_time, if present, shall either be
rewritten or the pts_adjustment field shall carry the offset necessary to adjust the PTS carried in
splice_time to the new time base so that the time_descriptor() maintains its accuracy.

If the value of a time_descriptor is carried into DASH or HLS media segments, the PTS value carried in
splice_time, if present, shall be converted to the corresponding media time base and be carried as
appropriate to the target format, for example an ‘emsg’ (or ‘prft’) structure in a DASH ISOBMFF media

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 77

segment or an ID3 tag in an HLS media segment.

As the packets containing the time_descriptor() may not align with segment boundaries or other specific
points in the delivery format, it may be necessary to derive new presentation and wall clock times from
the time_descriptor() if that alignment is required. The packager or other stream processor is responsible
for adjusting the presentation time and programmer’s wall clock time carried in the time_descriptor()
appropriately.

An example would be to use this derived wall clock time to place a timestamp at the beginning of each
media segment. One could use this timestamp, carried as a tag in the manifest file or in the media
segments, to synchronize with external metadata.

10.3.4.2. Synchronized Clock carriage in HLS Timed Metadata (ID3 tags)

HLS defines a mechanism for carrying timed metadata as ID3 frames carried in PES packets, with
associated PTS values. [HLS-TMD]

Two existing ID3 frames may be used to carry the contents of a time_descriptor, TDRL (release time) or
TDEN (encoding time). Both of these carry a UTC timestamp in ISO 8601 format as described in the
ID3v2 structure document [ID3v2-strct]. These timestamps provide a precision of seconds.

If finer precision is required the timestamp may be carried in an SCTE-defined private (PRIV) ID3 tag.

The format for PRIV frames per [ID3v2-strct] is:
 Header <"PRIV">
 Owner identifier <text string> $00
 The private data <binary data>

The owner identifier shall be <standards@scte.org>

The private data shall be <scte35-time$00time> where “time” is an ISO 8601 timestamp with ms
accuracy.

10.3.5. audio_descriptor()
The audio_descriptor() should be used when programmers and/or MVPDs do not support dynamic
signaling (e.g., signaling of audio language changes) and with legacy audio formats that do not support
dynamic signaling. As discussed in Section 9.1.5 of the SCTE Operational Practice on Multiple Audio
Signaling [SCTE 248], since most MVPD headends do not change the PAT/PMT to signal changed audio
streams, this descriptor in SCTE 35 should be used to signal such changes. This descriptor is an
implementation of a splice_descriptor(). It provides the ability to dynamically signal the audios actually in
use in the stream. This descriptor shall only be used with a time_signal command and a segmentation
descriptor with the type Program_Start or Program_Overlap_Start.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 78

Table 26 - audio_descriptor()
Syntax Bits Mnemonic

audio_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 audio_count 4 uimsbf
 reserved 4 bslbf
 for (i=0; i<audio_count; i++) {
 component_tag 8 uimsbf
 ISO_code 24 uimsbf
 Bit_Stream_Mode 3 uimsbf
 Num_Channels 4 uimsbf
 Full_Srvc_Audio 1 uimsbf
 }
}

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 79

The XML schema for audio_descriptor() is shown in Figure 20.

Figure 20 – AudioDescriptor

10.3.5.1. Semantic definition of fields in audio_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the body
of this descriptor. The splice_descriptor_tag shall have a value of 0x04.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x04 when
transforming from an XML representation of the audio_descriptor() to Bit Stream Format.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this field.

There is no entry in the XML schema for descriptor_length. The value shall be derived when converting
an XML representation of the audio_descriptor() to Bit Stream Format.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 80

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall have a
value of 0x43554549 (ASCII “CUEI”).

There is no entry in the XML schema for identifier.

audio_count – The value of this flag is the number of audio PIDs in the program.

There is no entry in the XML schema for audio_count. The value shall be derived when converting an
XML representation of the audio_descriptor() to Bit Stream Format based on the number of audio
channels.

component_tag – An optional 8-bit value that identifies the elementary PID stream containing the audio
channel that follows. If used, the value shall be the same as the value used in the
stream_identifier_descriptor() to identify that elementary PID stream. If this is not used, the value shall
be 0xFF and the stream order shall be inferred from the PMT audio order.

@componentTag [Required, xsd:unsignedByte]

ISO_code – This field is a 3-byte language code defining the language of this audio service which shall
correspond to a registered language code contained in the Code column of the [ISO 639-2] registry.

@chars [Optional; xsd:language]

Bit_Stream_Mode – As per ATSC A/52 Table 5.7.

@chars [Required, xsd:unsignedByte]

Num_Channels – As per ATSC A/52 Table A4.5.

@chars [Required, xsd:unsignedByte]

Full_Srvc_Audio – (From ATSC A/52 Annex A.4.3)
“This is a 1-bit field that indicates if this audio service is a full service suitable for presentation, or a
partial service which should be combined with another audio service before presentation. This bit
should be set to a ‘1’ if this audio service is sufficiently complete to be presented to the listener
without being combined with another audio service (for example, a visually impaired service which
contains all elements of the program; music, effects, dialogue, and the visual content descriptive
narrative). This bit should be set to a ‘0’ if the service is not sufficiently complete to be presented
without being combined with another audio service (e.g., a visually impaired service which only
contains a narrative description of the visual program content and which needs to be combined with
another audio service which contains music, effects, and dialogue).”

@chars [Required, xsd:unsignedByte]

11. Encryption

11.1. Overview

The splice_info_section supports the encryption of a portion of the section in order that one may prevent
access to an avail to all except those receivers that are authorized for that avail. This chapter of the
document describes the various encryption algorithms that may be used. The encryption of the section is
optional, as is the implementation of encryption by either the creator of the message, or any receive

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 81

devices. The use of encryption is deemed optional to allow a manufacturer to ship “in-the-clear” systems
without worrying about the export of encryption technology. If encryption is included in the system, any
receive device shall implement all of the algorithms listed in this document, which allows the creator of a
splice info table to use any of the algorithms in a transmission. The use of private encryption technology
is optional, and out of the scope of this document.

11.2. Fixed key encryption

The encryption used with this document assumes a fixed key is to be used. The same key is provided to
both the transmitter and the receiver. The method of delivering the key to all parties is unspecified. This
document allows for up to 256 different keys to be available for decryption. The cw_index field is used to
determine which key should be used when decrypting a section. The length of the fixed key is dependent
on the type of algorithm being used. It is assumed that fixed key delivered to all parties will be the correct
length for the algorithm that is intended to be used.

11.3. Encryption algorithms

NOTE: FIPS Publication 46-3 was withdrawn on May 19, 2005 and implementers that require encryption
of SCTE 35 messages may wish to use a user private encryption algorithm.

The encryption_algorithm field of the splice_info_section is a 6-bit value, which may contain one of the
values shown in Table 27. All Data Encryption Standard variants use a 64-bit key (actually 56 bits plus a
checksum) to encrypt or decrypt a block of 8 bytes. In the case of triple DES, there will need to be 3 64-
bit keys, one for each of the three passes of the DES algorithm. The “standard” triple DES actually uses
two keys, where the first and third keys are identical. See [FIPS PUB 46-3] and [FIPS PUB 81].

Table 27 - Encryption algorithm
Value Encryption algorithm

0 No encryption
1 DES – ECB mode
2 DES – CBC mode
3 Triple DES EDE3 – ECB mode
4-31 Reserved
32-63 User private

11.3.1. DES – ECB mode

This algorithm uses the “Data Encryption Standard”, (see [FIPS PUB 81]), in the electronic codebook
mode.

In order to use this type of encryption, the encrypted data shall contain a multiple of 8 bytes of data, from
splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used to pad any
extra bytes that may be required.

11.3.2. DES – CBC mode

This algorithm uses the “Data Encryption Standard” (see [FIPS PUB 81]), in the cipher block chaining
mode. The basic algorithm is identical to DES ECB. Each 64-bit plaintext block is bitwise exclusive-
ORed with the previous ciphertext block before being encrypted with the DES key. The first block is
exclusive-ORed with an initial vector. For the purposes of this document, the initial vector shall have a
fixed value of zero.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 82

In order to use this type of encryption, the encrypted data shall contain a multiple of 8 bytes of data, from
splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used to pad any
extra bytes that may be required.

11.3.3. Triple DES EDE3 – ECB mode

This algorithm uses three 64-bit keys, each key being used on one pass of the DES-ECB algorithm (see
[FIPS PUB 46-3]). Every block of data at the transmit device is first encrypted with the first key,
decrypted with the second key, and finally encrypted with the third key. Every block at the receive site is
first decrypted with the third key, encrypted with the second key, and finally decrypted with the first key.

In order to use this type of encryption, the encrypted data shall contain a multiple of 8 bytes of data, from
splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used to pad any
extra bytes that may be required.

11.3.4. User private algorithms

This document allows for the use of private encryption algorithms. It is not specified how the transmit
and receive devices agree on the algorithm to use for any user private code. It is also not specified as to
how coordination of private values for the encryption_algorithm field should be registered or
administered.

12. SCTE 35 Usage

12.1. SCTE 35 Usage in DASH

SCTE 35 messages can be carried in DASH. See [SCTE 214-1], [SCTE 214-2] and [SCTE 214-3].

12.2. SCTE 35 Usage in HLS

Manipulation of an HLS m3u8 manifest is used to provide seamless ad insertion. The manifest is
modified to include targeted ads prior to delivery to the player or the manifest is modified at the player
before delivery to the device’s video playback engine. These mechanisms allow for seamless playback
without buffering or other interruptions in the playback experience. HLS m3u8 manifest manipulation can
be done on a server or on a client (for example, to implement companion ads). Client-side ad insertion
typically would need a secure player implementation to insure the ad segments play out correctly.

This document presents two alternatives for SCTE 35 messages that are carried in HLS. The
recommended approach is based on [HLS-TMD] and is clarified in section 12.2.1. The legacy approach is
specified in section 12.2.2. Both methods can be used in the same manifest and it is up to the implementer
to use the appropriate markings for the devices and players that they require compatibility with.

12.2.1. SCTE 35 markup in HLS using EXT-X-DATERANGE

Carriage of SCTE 35 in HLS using EXT-X-DATERANGE is described in [HLS-TMD].

For clarification, when using the END-ON-NEXT attribute, the CLASS attribute should be set to the
segmentation_type_id value of the associated splice out cue. This ensures that sequential cues of the same
time can be labeled by the same CLASS.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 83

12.2.2. SCTE 35 markup in HLS using EXT-X-SCTE35

Ad cues and other signaling metadata are placed into the HLS m3u8 manifest file using HLS tags and
attribute lists.

The SCTE 35 HLS tag definition in this standard is consistent with HLS tag definitions in [HLS].

The SCTE 35 HLS attributes on the tag definition in this standard is consistent with HLS attribute
definition in [HLS].

The SCTE 35 HLS attributes shall comply with the following:

Attribute Type AttributeValue Data Type

Number decimal-floating-point

String quoted-string

The general method of operation utilizes tags marking the beginning and end of each signaled sequence of
content segments. In this way it is possible to signal placement opportunities, local (distributor) avails and
provider advertisements.

Using tags marking the beginning and end of each signaled sequence of content segments may also be
used to control stream blackouts using manifest manipulation on the server, so restricted content is never
sent to the viewer.

12.2.3. HLS cue tags

The #EXT-X-SCTE35 is the only tag defined by this standard.

Table 28 - Tag #EXT-X-SCTE35
Tag Name Attributes Description

#EXT-X-SCTE35 CUE
DURATION
ELAPSED
ID
TIME
TYPE
UPID
BLACKOUT
CUE-OUT
CUE-IN
SEGNE

Tag representing an embedded SCT35
message as a binary representation as
described in section 7.4 The binary
representation shall be encoded in Base64 as
defined in section 7.4 of [RFC 4648] with
W3C recommendations. The client or manifest
manipulator should decode the Base64
encoded string, then apply Table 5 to interpret
the message.

Table 29 - Tag attributes
Attribute Name Attribute Type Required Description

CUE String Required The SCTE 35 binary message encoded in
Base64 as defined in section 7.4 of [RFC
4648] with W3C recommendations.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 84

Attribute Name Attribute Type Required Description
DURATION Double Optional The duration of the signaled sequence defined

by the CUE. The duration is expressed in
seconds to millisecond accuracy.

ELAPSED Double Optional Offset from the CUE (typically a start
segmentation type) of the earliest presentation
time of the HLS media segment that follows.
If an implementation removes fragments from
the manifest file (e.g., live application), the
ELAPSED value shall be adjusted by the
duration of the media segments removed.
Elapsed is expressed in seconds to millisecond
accuracy.

ID String Optional A unique value identifying the CUE.
TIME Double Optional TIME represents the start time of the signaled

sequence. If present in a stream, the SCTE 35
time descriptor should be utilized as the time
basis.
Since time descriptor uses TAI, a conversion
to UTC is required, see section 10.3.4.2.
TIME shall be the UTC time corresponding to
the start time of the first inserted HLS media
segment. TIME shall be to millisecond
accuracy.
To calculate the actual temporal position
within the content for the CUE, add TIME and
ELAPSED.

TYPE Integer Optional If present, the segmentation_type_id from the
SCTE 35 segmentation descriptor. (See Table
22, NOTE: An Integer may be expressed as a
decimal or in other bases such as hexadecimal.
When hex representation is used the value
should be preceded by 0x)

UPID String Optional Quoted string containing the
segmentation_upid_type and the
segmentation_upid separated by a colon. The
segmentation_upid_type is an ascii hex value
prefixed with 0x or 0X. The
segmentation_upid is an ascii hex prefixed
with 0x or 0X, or an ascii string representation
of the decoded binary. If
segmentation_upid_type is 0x0D (MID),
seperate each
<segmentation_upid_type:segmentation_upid>
pair with a semi-colon.

BLACKOUT String Optional Enumeration of delivery restriction states as
determined by business logic in the packager.
Valid values are: YES, NO (default),
MAYBE. YES indicates content is currently
subject to blackout. MAYBE indicates content

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 85

Attribute Name Attribute Type Required Description
is subject to conditional restrictions and that
external authorization is required for rights
enforcement (i.e., regional blackout and/or
device restrictions). NO indicates content is
not subject to restriction.

CUE-OUT String Optional Signal to begin ad insertion. Valid values are:
YES, NO (default), CONT. CONT signals the
"continuation" of a break replacement
opportunity started with CUE-OUT on a
previous tag. Used for partial break
replacement when a player joins mid-break.
When CONT is present, the ELAPSED and
DURATION attributes should be included.

CUE-IN String Optional Signal to stop replacing content. Valid values
are: YES, NO (default)

SEGNE String Optional Values from the segment_num and
segment_expected fields, expressed as decimal
integers and delimited with a colon. For
example, SEGNE="3:3"

12.2.4. HLS playlist example

The following HLS example illustrates a possible live programming scenario that includes a full
complement of #EXT-X-SCTE 35 tags.

1) Network Start (0x50) – 2015-12-01T00:00:00+00:00 – 32400.0 seconds of elapsed video
removed from the playlist since original tag at 1448928000.000

2) Program Start (0x10) – 2015-12-01T09:00:00+00:00 – Blackout attribute indicates a potential
regional blackout.

3) Provider Placement Opportunity Start (0x34) – Duration 60.060 seconds – Cue-Out indicates
dynamic ad insertion/replacement is desired by the publisher

a. Distributor Placement Opportunity Start (0x36)
b. Distributor Placement Opportunity End (0x37)

4) Provider Placement Opportunity End (0x35)
5) Program End (0x11) and Program Start (0x10) for the next program, which is not subject to

blackout restrictions.

The SCTE35 Base64 CUE values have been omitted for the sake of space and clarity of the example.

#EXTM3U
#EXT-X-TARGETDURATION:10
#EXT-X-VERSION:4
#EXT-X-MEDIA-SEQUENCE:918
#EXT-X-PROGRAM-DATE-TIME:2015-12-01T09:00:00+00:00
#EXT-X-SCTE35:TYPE=0x50,TIME=1448928000.000,ELAPSED=32400.0,CUE=”...”,ID=”e+CuqI”
#EXT-X-SCTE35:TYPE=0x10,ELAPSED=0.0, UPID="0x08:0x9425",BLACKOUT=MAYBE,CUE=”...”,ID=”dAQ”
#EXTINF:1.034
stream_med_00000.ts
#EXTINF:10.010
stream_med_00001.ts
#EXTINF:10.010
stream_med_00002.ts
#EXTINF:10.010
stream_med_00003.ts
#EXT-X-SCTE35:TYPE=0x34,DURATION=60.060,CUE-OUT=YES,UPID="0x08:0x9425BC",CUE=”...”,ID=”f6UrRd”
#EXTINF:10.010

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 86

stream_med_00004.ts
#EXTINF:10.010
stream_med_00005.ts
#EXT-X-SCTE35:TYPE=0x36,CUE=”...”,ID=”4Ylv5d”
#EXTINF:10.010
stream_med_00006.ts
#EXTINF:10.010
stream_med_00007.ts
#EXTINF:10.010
stream_med_00008.ts

#EXT-X-SCTE35:TYPE=0x37,CUE=”...”,ID=”pIViS5”
#EXTINF:10.010
stream_med_00009.ts
#EXT-X-SCTE35:TYPE=0x35,CUE-IN=YES,CUE=”...”,ID=”f6UrRd”
#EXTINF:10.010
stream_med_00010.ts
#EXTINF:10.010
stream_med_00011.ts
#EXTINF:10.010
stream_med_00012.ts
#EXT-X-SCTE35:TYPE=0x11,UPID="0x08:0x9425BC",CUE=”...”,ID=”dAQpTQ”
#EXT-X-SCTE35:TYPE=0x10,UPID="0x08:0x9425BD",BLACKOUT=NO,CUE=”...”,ID=”dAQpTr”
#EXTINF:10.010
stream_med_00013.ts

13. SCTE 35 XML elements and types
In addition to the SCTE 35 XML types and associated elements and attributes described in earlier sections
of this specification, this section provides details on additional SCTE 35 XML elements and types.

13.1. Ext element

The Ext (extensibility) element allows zero or more elements from any namespace to be included. This
element facilitates expansion, customization, and extensibility of the specification. Encapsulating
elements from external namespaces into a single element allows filters, transforms, and other operations
to be applied easily. See Figure 21.

Figure 21 - Ext Element

@##any [Optional] – Any additional attribute from any namespace.

##any[Optional] – Zero or more elements from any namespace. (Zero elements are allowed as all the
data may be included via attributes.)

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 87

13.2. PTSType

PTSType is a simple type used to specify a PTS Time. PTSType is an xsd:unsignedLong that can hold
33-bit time. It is constrained to a minimum value of 0 and a maximum value of 8589934592. The default
value is 0.

13.3. Segmentation Upid Element

The Segmentation Upid Element is used to express a UPID in an XML document. See 10.3.3
segmentation_descriptor() for usage in a segmentation descriptor.

The XML schema for SegmentationUpid is shown in Figure 22.

Figure 22 - SegmentationUpid

@segmentationUpidType [Optional, xsd:unsignedByte]. See Table 21 for valid values. The value for
MID() shall not be specified. MID() shall be implied based on the presence of multiple
SegmentationUpid Elements.

@formatIdentifier [Optional, xsd:unsignedInt]. Specify for MPU only. See section 10.3.3.3 for
description of format_identifier in an MPU.

@segmentationUpidFormat. The format of the UPID value. Valid values are: text, hexBinary, base-64 or
private.

14. Sample SCTE 35 Messages (Informative)
These are examples. In actual practice, there would be many variations of options and their use. These
examples are meant to provide an overview and insight into the use and capabilities of Messages within
this standard.

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 88

The decoding of the hex/base64 strings omits some redundant information such as the CUEI identifier for
clarity. These examples are the output from the open source decoder available on github.

14.1. Time_Signal – Placement Opportunity Start

This is an example of using the Time_Signal command with a segmentation descriptor. The programmer
that created this message used the Web Delivery Allowed flag to indicate the broadcast advertisements
should be blacked out. This would tend to also indicate that digital ad insertion would be used to insert
new advertisements in their place. The programmer is also using the segment number in a non-normative
manner to indicate that there are distributor placement opportunities within this provider placement
opportunity. A standardized method of doing this would be to use the MID format of the segmentation
UPID type and insert a UPID type 0x0E (ADS) with this information.

Also note the Tier value in this message is 0xfff as displayed on the output of a receiver. It is likely that
the value of Tier in transmission had a different value that this receiver was authorized to receive, and the
receiver obfuscated that by changing the value to 0xfff.

2018-07-16 00:04:57 M274P29528596539
Hex=0xFC3034000000000000FFFFF00506FE72BD0050001E021C435545494800008E7FCF0001A599B00808000000002CA0A18A3402009AC9D17E
Base64=/DA0AAAAAAAA///wBQb+cr0AUAAeAhxDVUVJSAAAjn/PAAGlmbAICAAAAAAsoKGKNAIAmsnRfg==

Decoded length = 55
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 52
Protocol Version = 0
unencrypted Packet
PTS Adjustment = 0x000000000
Tier = 0xfff
Splice Command Length = 0x5
Time Signal
Time = 0x072bd0050 - 21388.766756
Descriptor Loop Length = 30
Segmentation Descriptor - Length=28
Segmentation Event ID = 0x4800008e
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 0
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
Segmentation Duration = 0x0001a599b0 = 307.000000 seconds
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ca0a18a
Type = Placement Opportunity Start
Segment num = 2 Segments Expected = 0
CRC32 = 0x9ac9d17e

14.2. Splice_Insert

This is the legacy standard for a distributor placement opportunity. As a significant number of existing ad
servers will not respond to the newer time signal command, it is likely that this message will be in use
until the legacy components are removed and replaced. The programmer that generated this message uses
the break duration and auto return mode for the splice insert. The break duration at 60.293567 seconds is
slightly longer than the contracted 60 second local avail; it is, however, the exact duration of the content
that the local avail will overlay. This means that the encoder will generate a key frame at that specified

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 89

break duration from the splice time and the affiliate should fill the duration with a slate or black (in some
countries a blue color is used). Some splicers or fragmented file delivery systems may be able to adjust
the duration and boundaries to match the key frames as well.

2018-07-16 00:06:59 M274P29540838841
Hex=0xFC302F000000000000FFFFF014054800008F7FEFFE7369C02EFE0052CCF500000000000A0008435545490000013562DBA30A
Base64=/DAvAAAAAAAA///wFAVIAACPf+/+c2nALv4AUsz1AAAAAAAKAAhDVUVJAAABNWLbowo=

Decoded length = 50
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 47
Protocol Version = 0
unencrypted Packet
PTS Adjustment = 0x000000000
Tier = 0xfff
Splice Command Length = 0x14
Splice Insert
Splice Event ID = 0x4800008f
Flags OON=1 Prog=1 Duration=1 Immediate=0
Splice time = 0x07369c02e - 21514.559089
Auto Return
break duration = 0x00052ccf5 = 60.293567 seconds
Unique Program ID = 0
Avail Num = 0
Avails Expected = 0
Descriptor Loop Length = 10
Avail Descriptor - Length=8
Avail Descriptor = 0x00000135 - 309
CRC32 = 0x62dba30a

14.3. Time_Signal – Placement Opportunity End

2018-07-16 00:10:04 M274P29559224252
Hex=0xFC302F000000000000FFFFF00506FE746290A000190217435545494800008E7F9F0808000000002CA0A18A350200A9CC6758
Base64=/DAvAAAAAAAA///wBQb+dGKQoAAZAhdDVUVJSAAAjn+fCAgAAAAALKChijUCAKnMZ1g=

Decoded length = 50
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 47
Protocol Version = 0
unencrypted Packet
PTS Adjustment = 0x000000000
Tier = 0xfff
Splice Command Length = 0x5
Time Signal
Time = 0x0746290a0 - 21695.740089
Descriptor Loop Length = 25
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x4800008e
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ca0a18a
Type = Placement Opportunity End
Segment num = 2 Segments Expected = 0
CRC32 = 0xa9cc6758

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 90

14.4. Time_Signal – Program Start/End

2018-07-16 00:00:15 M274P29500484335
Hex=0xFC3048000000000000FFFFF00506FE7A4D88B60032021743554549480000187F9F0808000000002CCBC344110000021743554549480000197F9F08
08000000002CA4DBA01000009972E343
Base64=/DBIAAAAAAAA///wBQb+ek2ItgAyAhdDVUVJSAAAGH+fCAgAAAAALMvDRBEAAAIXQ1VFSUgAABl/nwgIAAAAACyk26AQAACZcuND

Decoded length = 75
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 72
Protocol Version = 0
unencrypted Packet
PTS Adjustment = 0x000000000
Tier = 0xfff
Splice Command Length = 0x5
Time Signal
Time = 0x07a4d88b6 - 22798.906911
Descriptor Loop Length = 50
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x48000018
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ccbc344
Type = Program End
Segment num = 0 Segments Expected = 0
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x48000019
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ca4dba0
Type = Program Start
Segment num = 0 Segments Expected = 0
CRC32 = 0x9972e343

14.5. Time_Signal – Program Overlap Start

2018-07-16 02:59:52 M274P30575324060
Hex=0xFC302F000000000000FFFFF00506FEAEBFFF640019021743554549480000087F9F0808000000002CA56CF5170000951DB0A8
Base64=/DAvAAAAAAAA///wBQb+rr//ZAAZAhdDVUVJSAAACH+fCAgAAAAALKVs9RcAAJUdsKg=

Decoded length = 50
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 47
Protocol Version = 0
unencrypted Packet
PTS Adjustment = 0x000000000

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 91

Tier = 0xfff
Splice Command Length = 0x5
Time Signal
Time = 0x0aebfff64 - 32575.759333
Descriptor Loop Length = 25
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x48000008
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ca56cf5
Type = Program Overlap Start
Segment num = 0 Segments Expected = 0
CRC32 = 0x951db0a8

14.6. Time_Signal – Program Blackout Override / Program End

Since the restriction flags are not evaluated on an End message, the use of the program blackout override
can be used in the case of an overlap start or other condition where the restrictions may need to be
changed during a program playback.

2018-07-16 01:45:45 M274P30131806863
Hex=0xFC3048000000000000FFFFF00506FE932E380B00320217435545494800000A7F9F0808000000002CA0A1E3180000021743554549480000097F9F080
8000000002CA0A18A110000B4217EB0
Base64=/DBIAAAAAAAA///wBQb+ky44CwAyAhdDVUVJSAAACn+fCAgAAAAALKCh4xgAAAIXQ1VFSUgAAAl/nwgIAAAAACygoYoRAAC0IX6w

Decoded length = 75
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 72
Protocol Version = 0
unencrypted Packet
PTS Adjustment = 0x000000000
Tier = 0xfff
Splice Command Length = 0x5
Time Signal
Time = 0x0932e380b - 27436.441722
Descriptor Loop Length = 50
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x4800000a
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ca0a1e3
Type = Program Blackout Override
Segment num = 0 Segments Expected = 0
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x48000009
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 92

UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ca0a18a
Type = Program End
Segment num = 0 Segments Expected = 0
CRC32 = 0xb4217eb0

14.7. Time_Signal – Program End

2018-07-16 03:00:28 M274P30578915636
Hex=0xFC302F000000000000FFFFF00506FEAEF17C4C0019021743554549480000077F9F0808000000002CA56C97110000C4876A2E
Base64=/DAvAAAAAAAA///wBQb+rvF8TAAZAhdDVUVJSAAAB3+fCAgAAAAALKVslxEAAMSHai4=

Decoded length = 50
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 47
Protocol Version = 0
unencrypted Packet
PTS Adjustment = 0x000000000
Tier = 0xfff
Splice Command Length = 0x5
Time Signal
Time = 0x0aef17c4c - 32611.795333
Descriptor Loop Length = 25
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x48000007
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002ca56c97
Type = Program End
Segment num = 0 Segments Expected = 0
CRC32 = 0xc4876a2e

14.8. Time_Signal – Program Start/End - Placement Opportunity End

This is a complex message, although one that can occur frequently as many ad breaks are placed at the
end of the program. The implementer should take care though to find the length and current practice is to
try and keep the message in a single transport packet.

2018-07-16 03:00:33 M274P30579401569
Hex=0xFC3061000000000000FFFFF00506FEA8CD44ED004B021743554549480000AD7F9F0808000000002CB2D79D350200021743554549480000267F9F0
808000000002CB2D79D110000021743554549480000277F9\
F0808000000002CB2D7B31000008A18869F
Base64=/DBhAAAAAAAA///wBQb+qM1E7QBLAhdDVUVJSAAArX+fCAgAAAAALLLXnTUCAAIXQ1VFSUgAACZ/nwgIAAAAACyy150RAAACF0NVRUlIAAAnf58
ICAAAAAAsstezEAAAihiGnw==

Decoded length = 100
Table ID = 0xFC
MPEG Short Section
Not Private
Reserved = 0x3
Section Length = 97
Protocol Version = 0
unencrypted Packet

ANSI/SCTE 35 2019r1

AMERICAN NATIONAL STANDARD ©SCTE 93

PTS Adjustment = 0x000000000
Tier = 0xfff
Splice Command Length = 0x5
Time Signal
Time = 0x0a8cd44ed - 31466.942367
Descriptor Loop Length = 75
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x480000ad
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002cb2d79d
Type = Placement Opportunity End
Segment num = 2 Segments Expected = 0
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x48000026
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002cb2d79d
Type = Program End
Segment num = 0 Segments Expected = 0
Segmentation Descriptor - Length=23
Segmentation Event ID = 0x48000027
Segmentation Event Cancel Indicator NOT set
Delivery Not Restricted flag = 0
Web Delivery Allowed flag = 1
No Regional Blackout flag = 1
Archive Allowed flag = 1
Device Restrictions = 3
Program Segmentation flag SET
UPID Type = Turner Identifier length = 8
Turner Identifier = 0x000000002cb2d7b3
Type = Program Start
Segment num = 0 Segments Expected = 0
CRC32 = 0x8a18869f

	Table of Contents
	1. Introduction
	1.1. Executive Summary
	1.2. Scope
	1.3. Benefits
	1.4. Intended Audience
	1.5. Areas for Further Investigation or to be Added in Future Versions

	2. Normative References
	2.1. SCTE References
	2.2. Standards from Other Organizations
	2.3. Published Materials

	3. Informative References
	3.1. SCTE References
	3.2. Standards from Other Organizations
	3.3. Published Materials

	4. Compliance Notation
	5. Abbreviations and Definitions
	5.1. Abbreviations
	5.2. Definitions

	6. Introduction
	6.1. Splice points (Informative)
	6.2. Program splice points (Informative)
	6.3. Splice events (Informative)
	6.4. Content storage considerations (Informative)
	6.5. PID selection
	6.5.1. PID selection (Normative)
	6.5.2. PID selection (Informative)

	6.6. Message flow (Informative)
	6.7. Usage Examples (Informative)
	6.7.1. SCTE 35 Ad Break Example
	6.7.1. SCTE 35 Program Example
	6.7.1. SCTE 35 Complex example

	7. Notational Conventions
	7.1. Normative XML schema
	7.2. Unknown/Unrecognized/Unsupported XML elements and attributes
	7.3. Element order
	7.4. Binary representation in XML

	8. PMT Descriptors
	8.1. Registration descriptor
	8.1.1. Semantic definition of fields in Registration Descriptor

	8.2. Cue Identifier Descriptor
	8.2.1. Semantic definition of fields in Cue Identifier Descriptor
	8.2.2. Description of cue_stream_type usage

	8.3. Stream Identifier Descriptor
	8.3.1. Semantic definition of fields in Stream Identifier Descriptor

	9. Splice information table
	9.1. Overview
	9.2. Legacy Command Descriptions
	9.3. Time Signal Command
	9.4. Command Changes
	9.5. Time base discontinuities
	9.6. Splice info section
	9.6.1. Semantic definition of fields in splice_info_section()

	9.7. Splice commands
	9.7.1. splice_null()
	9.7.2. splice_schedule()
	9.7.2.1. Semantic definition of fields in splice_schedule()

	9.7.3. splice_insert()
	9.7.3.1. Semantic definition of fields in splice_insert()

	9.7.4. time_signal()
	9.7.4.1. Semantic definition of time_signal()

	9.7.5. bandwidth_reservation()
	9.7.6. private_command()

	9.8. Time
	9.8.1. splice_time()
	9.8.1.1. Semantic definition of fields in splice_time()

	9.8.2. break_duration()
	9.8.2.1. Semantic definition of fields in break_duration()

	9.9. Constraints
	9.9.1. Constraints on splice_info_section()
	9.9.2. Constraints on the interpretation of time
	9.9.2.1. Constraints on splice_time() for splice_insert()
	9.9.2.2. Constraints on break_duration() for splice_insert()

	10. Splice Descriptors
	10.1. Overview
	10.2. Splice descriptor
	10.2.1. Semantic definition of fields in splice_descriptor()

	10.3. Specific splice descriptors
	10.3.1. avail_descriptor()
	10.3.1.1. Semantic definition of fields in avail_descriptor()

	10.3.2. DTMF_descriptor()
	10.3.2.1. Semantic definition of fields in DTMF_descriptor()

	10.3.3. segmentation_descriptor()
	10.3.3.1. Segmentation descriptor details
	10.3.3.2. Cablelabs metadata identifier
	10.3.3.3. MPU() definition and semantics
	10.3.3.4. MID() definition and semantics
	10.3.3.5. Segmenting Content - Additional semantics
	10.3.3.6. Programs - Additional semantics
	10.3.3.7. Chapters - Additional semantics
	10.3.3.8. Break – Additional semantics
	10.3.3.9. Delivery Restrictions – Additional semantics
	10.3.3.10. Content Identifiers – Additional semantics
	10.3.3.11. Placement Opportunities – Additional semantics
	Placement Opportunity Identifiers
	Placement Opportunity Break Numbering
	Multiple Placement Opportunity End Messages

	10.3.4. time_descriptor()
	10.3.4.1. Informative description of TAI
	10.3.4.2. Semantic definition of fields in time_descriptor()
	10.3.4.1. Synchronized Client Clock
	10.3.4.2. Synchronized Clock carriage in HLS Timed Metadata (ID3 tags)

	10.3.5. audio_descriptor()
	10.3.5.1. Semantic definition of fields in audio_descriptor()

	11. Encryption
	11.1. Overview
	11.2. Fixed key encryption
	11.3. Encryption algorithms
	11.3.1. DES – ECB mode
	11.3.2. DES – CBC mode
	11.3.3. Triple DES EDE3 – ECB mode
	11.3.4. User private algorithms

	12. SCTE 35 Usage
	12.1. SCTE 35 Usage in DASH
	12.2. SCTE 35 Usage in HLS
	12.2.1. SCTE 35 markup in HLS using EXT-X-DATERANGE
	12.2.2. SCTE 35 markup in HLS using EXT-X-SCTE35
	12.2.3. HLS cue tags
	12.2.4. HLS playlist example

	13. SCTE 35 XML elements and types
	13.1. Ext element
	13.2. PTSType
	13.3. Segmentation Upid Element

	14. Sample SCTE 35 Messages (Informative)
	14.1. Time_Signal – Placement Opportunity Start
	14.2. Splice_Insert
	14.3. Time_Signal – Placement Opportunity End
	14.4. Time_Signal – Program Start/End
	14.5. Time_Signal – Program Overlap Start
	14.6. Time_Signal – Program Blackout Override / Program End
	14.7. Time_Signal – Program End
	14.8. Time_Signal – Program Start/End - Placement Opportunity End

